
MATLAB®

External Interfaces

R2013a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® External Interfaces

© COPYRIGHT 1984–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
December 1996 First printing New for MATLAB 5 (release 8)
July 1997 Online only Revised for MATLAB 5.1 (Release 9)
January 1998 Second printing Revised for MATLAB 5.2 (Release 10)
October 1998 Third printing Revised for MATLAB 5.3 (Release 11)
November 2000 Fourth printing Revised and renamed for MATLAB 6.0 (Release 12)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for MATLAB 6.5 (Release 13)
January 2003 Online only Revised for MATLAB 6.5.1 (Release 13SP1)
June 2004 Online only Revised for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB 7.5 (Release 2007b)
March 2008 Online only Revised for MATLAB 7.6 (Release 2008a)
October 2008 Online only Revised for MATLAB 7.7 (Release 2008b)
March 2009 Online only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online only Revised for MATLAB 7.11 (Release 2010b)
April 2011 Online only Revised for MATLAB 7.12 (Release 2011a)
September 2011 Online only Revised for MATLAB 7.13 (Release 2011b)
March 2012 Online only Revised for MATLAB 7.14 (Release 2012a)
September 2012 Online only Revised for MATLAB 8.0 (Release 2012b)
March 2013 Online only Revised for MATLAB 8.1 (Release 2013a)

Contents

Read and Write MATLAB MAT-Files in C/C++
and Fortran

1
Writing Custom Applications to Read and Write
MAT-Files . 1-2
Why Write Custom Applications? . 1-2
What You Need . 1-3
MAT-File Interface Library . 1-4
Finding Associated Files . 1-5
Exchanging Data Files Between Platforms 1-6

Copy External Data into MAT-File Format with
Standalone Programs . 1-8
Overview of matimport.c Example . 1-8
Declare Variables for External Data 1-9
Create mxArray Variables . 1-10
Create MATLAB Variable Names . 1-10
Read External Data into mxArray Data 1-10
Create and Open MAT-File . 1-11
Write mxArray Data to File . 1-11
Clean Up . 1-11
Build the Application . 1-11
Create the MAT-File . 1-12
Import Data into MATLAB . 1-12

Create MAT-File in C . 1-13

Create MAT-File in C++ . 1-14

Read MAT-File in C/C++ . 1-15

Create MAT-File in Fortran . 1-16

Read MAT-File in Fortran . 1-17

v

Work with mxArrays . 1-18
Read Structures from a MAT-File . 1-18
Read Cell Arrays from a MAT-File 1-19

Table of MAT-File Source Code Files 1-21

Compiling and Linking MAT-File Programs 1-22
Building on UNIX Operating Systems 1-22
Building on Windows Operating Systems 1-23
Deploying MAT-File Applications . 1-24

Calling C Shared Library Functions from
MATLAB

2
Calling Functions in Shared Libraries 2-3
What Is a Shared Library? . 2-3
Selecting a C Compiler . 2-4
Loading and Unloading the Library 2-4
Viewing Library Functions . 2-5
Invoking Library Functions . 2-8

Limitations to Shared Library Support 2-9
MATLAB Supports C Library Routines 2-9
Workarounds for Loading C++ Libraries 2-9
Using Bit Fields . 2-10
Using Enum Declarations . 2-11
Unions Not Supported . 2-11
Compiler Dependencies . 2-12
Limitations Using Structures . 2-12
Limitations Using Pointers . 2-12
Functions with Variable Number of Input Arguments Not
Supported . 2-13

Troubleshooting Shared Library Applications 2-14

Module Not Found Error . 2-15

vi Contents

No Matching Signature Error . 2-16

MATLAB Crashes Making a Function Call to a Shared
Library . 2-17

Passing Arguments to Shared Library Functions 2-18
C and MATLAB Equivalent Types . 2-18
Passing Arguments . 2-20
Passing a NULL Pointer . 2-21
Manually Converting Data Passed to Functions 2-22

Shared Library shrlibsample.c . 2-23

Pass String Arguments . 2-25

Pass Structures . 2-27
Add Values of Fields in Structure . 2-27
Preconvert MATLAB Structure Before Adding Values . . . 2-28
Display Structure Field Names . 2-29

Pass Enumerated Types . 2-30
Call readEnum Function with Enumeration String 2-30
Call Function with Integer Equivalent of Enumeration . . . 2-30
Call Function with enum Pointer Type 2-31

Pass Pointers . 2-32
Pass Primitive MATLAB Type . 2-32

Pass Arrays . 2-33
Two Dimensional MATLAB Arrays 2-33
More than Two Dimensional MATLAB Arrays 2-34

Iterate Through an Array . 2-36
Create Cell Array from libpointer . 2-36
Perform Pointer Arithmetic on Structure Array 2-37

Working with Pointer Arguments 2-39
Pointer Arguments in C Functions 2-39
The libpointer Object . 2-39

vii

Creating a Pointer to a Primitive Type 2-41
Creating a Pointer to a Structure . 2-44
Passing a Pointer to the First Element of an Array 2-46
Putting a String into a Void Pointer 2-47
Passing an Array of Strings . 2-47
Memory Allocation for an External Library 2-49
Multilevel Pointers . 2-50

Working with Structure Arguments 2-53
Structure Argument Requirements 2-53
Finding Structure Field Names . 2-53
Strategies for Passing Structures . 2-53

Work with libstruct Objects . 2-55

MATLAB Prototype Files . 2-57
How to Create a Prototype File . 2-58
How to Specify a Thunk file . 2-58
Deploy Applications That Use loadlibrary 2-58
Use loadlibrary in a Parallel Computing Environment . . . 2-58
Change Function Signature . 2-58
Rename Library Function . 2-58
Load Subset of Functions in Library 2-59
Call Function with Variable Number of Arguments 2-59

Create Alias Function Name Using Prototype File 2-60

Intro to MEX-Files

3
Introducing MEX-Files . 3-2
What Are MEX-Files? . 3-2
Definition of MEX . 3-3
MEX and MX Matrix Libraries . 3-3
Introduction to Source MEX-Files . 3-3
Overview of Creating a Binary MEX-File 3-4
Configuring Your Environment . 3-4

viii Contents

MEX-Files Call C/C++ and Fortran Programs 3-5
Creating a Source MEX-File . 3-5
Workflow of a MEX-File . 3-10
Using Binary MEX-Files . 3-16
Binary MEX-File Placement . 3-17
Using Help Files with MEX-Files . 3-17
Workspace for MEX-File Functions 3-17

MATLAB Data . 3-18
The MATLAB Array . 3-18
Lifecycle of mxArray . 3-18
Data Storage . 3-20
MATLAB Types . 3-21
Sparse Matrices . 3-23
Using Data Types . 3-23
Testing for Most-Derived Class . 3-25

Build MEX-Files . 3-27
What You Need to Build MEX-Files 3-27
Selecting a Compiler on Windows Platforms 3-28
Selecting a Compiler on UNIX Platforms 3-33
Linking Multiple Files . 3-36
Overview of Building the timestwo MEX-File 3-36

Table of MEX-File Source Code Files 3-38

Custom Building MEX-Files . 3-43
When to Use Custom Building . 3-43
MEX Script Switches . 3-43
Custom Building on UNIX Systems 3-47
Custom Building on Windows Systems 3-52

Call LAPACK and BLAS Functions 3-59
What You Need to Know . 3-59
Creating a MEX-File Using LAPACK and BLAS
Functions . 3-60

Preserving Input Values from Modification 3-62
Passing Arguments to Fortran Functions from C/C++
Programs . 3-63

Passing Arguments to Fortran Functions from Fortran
Programs . 3-64

ix

Handling Complex Numbers in LAPACK and BLAS
Functions . 3-65

Modifying the Function Name on UNIX Systems 3-69

Running MEX-Files with .DLL File Extensions on
Windows 32-bit Platforms . 3-70

Upgrade MEX-Files to Use 64-Bit API 3-71
MATLAB Support for 64-Bit Indexing 3-71
MEX Uses 32-Bit API by Default . 3-71
What If I Do Not Upgrade? . 3-73
How to Upgrade MEX-Files to Use the 64-Bit API 3-75

Platform Compatibility . 3-84
Verify the MEX-File Is Built For Your Platform 3-84
Verify Your Architecture on Windows Platforms 3-84

Invalid MEX-File Error . 3-85
MATLAB Version Incompatibility . 3-85
DLL Files Not on Path on Windows Systems 3-85

Before You Run a MEX-File You Receive from Someone
Else . 3-86

Version Compatibility . 3-87

Troubleshooting MEX-Files . 3-88
Technical Support . 3-88

Configuration Issues . 3-89
Search Path Problem on Microsoft Windows Systems 3-89
MATLAB Path Names Containing Spaces on Windows
Systems . 3-89

Internal Error When Using mex -setup () 3-89

Understanding MEX-File Problems 3-91
Problem 1 — Compiling a Source MEX-File Fails 3-92
Problem 2 — Compiling Your Own Program Fails 3-92
Problem 3 — Binary MEX-File Load Errors 3-93
Problem 4 — Segmentation Fault . 3-94

x Contents

Problem 5 — Program Generates Incorrect Results 3-94

Compiler- and Platform-Specific Issues 3-96
Linux gcc Compiler Version Error . 3-96
Linux gcc -fPIC Errors . 3-96
Watcom IDE Unresolved References 3-96

Memory Management Issues . 3-97
Overview . 3-97
Improperly Destroying an mxArray 3-98
Incorrectly Constructing a Cell or Structure mxArray 3-98
Creating a Temporary mxArray with Improper Data 3-99
Creating Potential Memory Leaks . 3-100
Improperly Destroying a Structure 3-101
Destroying Memory in a C++ Class Destructor 3-102

Compiler Errors in Fortran MEX-Files 3-103

C/C++ MEX-Files

4
C/C++ Source MEX-Files . 4-2
The Components of a C/C++ MEX-File 4-2
Gateway Routine . 4-2
Computational Routine . 4-5
Preprocessor Macros . 4-5
Data Flow in MEX-Files . 4-5
Creating C++ MEX-Files . 4-9

Set Up C/C++ Examples . 4-11

Pass Scalar Values . 4-12

Pass Strings . 4-14

Pass Multiple Inputs or Outputs . 4-16

xi

Pass Structures and Cell Arrays . 4-18

Create 2-D Cell Array . 4-20

Fill mxArray . 4-21
Copying Data Directly into an mxArray 4-21
Pointing to Data . 4-21

Prompt User for Input . 4-22

Handle Complex Data . 4-23

Handle 8-, 16-, and 32-Bit Data . 4-24

Manipulate Multidimensional Numerical Arrays 4-25

Handle Sparse Arrays . 4-27

Call MATLAB Functions from C/C++ MEX-Files 4-28

Use C++ Features in MEX-Files . 4-29

Handle Files with C++ . 4-30
C Example . 4-30
C++ Example . 4-31

Debug C/C++ Language MEX-Files 4-32
Notes on Debugging . 4-32
Debugging on the Microsoft Windows Platforms 4-32
Debugging on Linux Platforms . 4-40

Handling Large mxArrays . 4-43
Using the 64-Bit API . 4-43
Building the Binary MEX-File . 4-45
Example . 4-45
Caution Using Negative Values . 4-46
Building Cross-Platform Applications 4-46

xii Contents

Memory Management . 4-47
Automatic Cleanup of Temporary Arrays 4-47
Persistent Arrays . 4-48

Handling Large File I/O . 4-50
Prerequisites to Using 64-Bit I/O . 4-50
Specifying Constant Literal Values 4-52
Opening a File . 4-53
Printing Formatted Messages . 4-54
Replacing fseek and ftell with 64-Bit Functions 4-54
Determining the Size of an Open File 4-55
Determining the Size of a Closed File 4-56

Fortran MEX-Files

5
Fortran Source MEX-Files . 5-2
The Components of a Fortran MEX-File 5-2
Gateway Routine . 5-2
Computational Routine . 5-5
Preprocessor Macros . 5-5
Using the Fortran %val Construct . 5-6
Data Flow in MEX-Files . 5-7

Set Up Fortran Examples . 5-12

Pass Scalar Values . 5-13

Pass Strings . 5-14

Pass Arrays of Strings . 5-15

Pass Matrices . 5-16

Pass Integers . 5-17

Pass Multiple Inputs or Outputs . 5-18

xiii

Handle Complex Data . 5-19

Dynamically Allocate Memory . 5-20

Handle Sparse Matrices . 5-21

Call MATLAB Functions from Fortran MEX-Files 5-22

Debug Fortran Source MEX-Files 5-24
Notes on Debugging . 5-24
Debugging on Microsoft Windows Platforms 5-24
Debugging on Linux Platforms . 5-24

Handling Large mxArrays . 5-27
Using the 64-Bit API . 5-27
Building the Binary MEX-File . 5-29
Caution Using Negative Values . 5-29
Building Cross-Platform Applications 5-29

Memory Management . 5-30

Calling MATLAB Engine from C/C++ and
Fortran Programs

6
Using MATLAB Engine . 6-2
Introduction to MATLAB Engine . 6-2
What You Need to Build Engine Applications 6-3
The Engine Library . 6-4
GUI-Intensive Applications . 6-5

Call MATLAB Functions from C Applications 6-6

Call MATLAB Functions from C++ Applications 6-8

Call MATLAB Functions from Fortran Applications . . 6-9

xiv Contents

Attach to Existing MATLAB Sessions 6-11

Compiling Engine Applications withMEX Command . . 6-13
Requirements to Build and Run Engine Applications 6-13
Building and Running Engine Applications on Windows
Operating Systems . 6-14

Windows Engine Example engwindemo 6-16
Building and Running Engine Applications on UNIX
Operating Systems . 6-17

UNIX Engine Example engdemo . 6-18

Compiling Engine Applications with IDE 6-19
Configuring the IDE . 6-19
Files Required by Engine Applications 6-19

Troubleshooting Engine Applications 6-23
Can’t Start MATLAB Engine Message 6-23
Debugging MATLAB Functions Used in Engine
Applications . 6-23

Using Java Libraries from MATLAB

7
Overview of Java Interface . 7-2
Java Interface Is Integral to MATLAB 7-2
Benefits of the MATLAB Java Interface 7-2
Who Should Use the MATLAB Java Interface 7-2
To Learn More About Java Programming Language 7-3
Platform Support for JVM Software 7-3

Bringing Java Classes into MATLAB Workspace 7-4
Introduction . 7-4
Sources of Java Classes . 7-4
Defining New Java Classes . 7-5
The Java Class Path . 7-5
Making Java Classes Available in MATLAB Workspace . . 7-8
Loading Java Class Definitions . 7-10
Simplifying Java Class Names . 7-10
Locating Native Method Libraries . 7-11

xv

Java Classes Contained in a JAR File 7-12

Creating and Using Java Objects . 7-13
Overview . 7-13
Constructing Java Objects . 7-13
Concatenating Java Objects . 7-16
Saving and Loading Java Objects to MAT-Files 7-17
Finding the Public Data Fields of an Object 7-18
Accessing Private and Public Data 7-18
Determining the Class of an Object 7-20

Invoking Methods on Java Objects 7-21
Calling Syntax . 7-21
Obtaining Information About Methods 7-23
Java Methods That Affect MATLAB Commands 7-27
How MATLAB Handles Undefined Methods 7-28
How MATLAB Handles Java Exceptions 7-29
Method Execution in MATLAB . 7-29

Working with Java Arrays . 7-30
Introduction . 7-30
How MATLAB Represents the Java Array 7-30
Creating an Array of Objects in MATLAB 7-35
Accessing Elements of a Java Array 7-37
Assigning to a Java Array . 7-41
Concatenating Java Arrays . 7-44
Creating a New Array Reference . 7-46
Creating a Copy of a Java Array . 7-46

Passing Data to Java Methods . 7-48
Introduction . 7-48
Conversion of MATLAB Argument Data 7-48
Passing Built-In Types . 7-50
Passing String Arguments . 7-51
Passing Java Objects . 7-52
Other Data Conversion Topics . 7-55
Passing Data to Overloaded Methods 7-56

Handling Data Returned from Java Methods 7-59
Introduction . 7-59
Conversion of Java Return Types . 7-59
Built-In Types . 7-60

xvi Contents

Java Objects . 7-60
Converting Objects to MATLAB Types 7-61

Read URL . 7-66
Overview . 7-66
Description of URLdemo . 7-66
Running the Example . 7-67

Find Internet Protocol Address . 7-69
Overview . 7-69
Description of resolveip . 7-69
Running the Example . 7-70

Create and Use Phone Book . 7-71
Overview . 7-71
Description of Function phonebook 7-72
Description of Function pb_lookup . 7-76
Description of Function pb_add . 7-77
Description of Function pb_remove 7-78
Description of Function pb_change 7-79
Description of Function pb_listall . 7-80
Description of Function pb_display 7-81
Description of Function pb_keyfilter 7-81
Running the phonebook Program . 7-82

Using .NET Libraries from MATLAB

8
Overview Using .NET from MATLAB 8-3
What Is the Microsoft .NET Framework? 8-3
Benefits of the MATLAB .NET Interface 8-3
Why Use the MATLAB .NET Interface? 8-3
Limitations to .NET Support . 8-4
What’s the Difference Between the MATLAB .NET
Interface and MATLAB Builder NE? 8-5

System Requirements . 8-6
Using a .NET assembly in MATLAB 8-6
To Learn More About the .NET Framework 8-6

xvii

Getting Started with .NET . 8-8
What is an Assembly? . 8-8
.NET Terminology . 8-9
Simplifying .NET Class Names . 8-10
Loading .NET Assemblies into MATLAB 8-11
Handling Exceptions . 8-12
Working With Nested Classes . 8-12

Using a .NET Object . 8-14
Creating a .NET Object . 8-14
Building a .NET Application for MATLAB Examples 8-14
What Classes Are in a .NET Assembly? 8-15
Using the delete Function on a .NET Object 8-15

Using .NET Properties . 8-17
How MATLAB Represents .NET Properties 8-17
How MATLAB Maps C# Property and Field Access
Modifiers . 8-18

Using .NET Methods in MATLAB . 8-19
Calling .NET Methods . 8-19
Calling .NET Generic Methods . 8-21
Calling .NET Methods with Optional Arguments 8-21
Calling .NET Extension Methods . 8-22
Call .NET Properties That Take an Argument 8-22
How MATLAB Represents .NET Operators 8-23
Limitations to Support of .NET Methods 8-24

Working with .NET Events in MATLAB 8-25
Use .NET Events in MATLAB . 8-25
Limitations to Support of .NET Events 8-26

Using Arrays with .NET Applications 8-27
Passing MATLAB Arrays to .NET . 8-27
Accessing .NET Array Elements in MATLAB 8-27
Converting .NET Arrays to Cell Arrays 8-28
Converting .NET Jagged Arrays to MATLAB Arrays 8-30
Limitations to Support of .NET Arrays 8-30

Pass Jagged Arrays . 8-31
Create System.Double .NET Jagged Array 8-31

xviii Contents

Call .NET Method with System.String Jagged Array
Arguments . 8-32

Call .NET Method with Multidimensional Jagged Array
Arguments . 8-33

.NET Delegates in MATLAB . 8-35
.NET Delegates . 8-35
Call .NET Delegates in MATLAB . 8-36
Create Delegates from .NET Object Methods 8-37
Create Delegate Instances Bound to .NET Methods 8-38
Call Delegates With out and ref Type Arguments 8-39
Combine and Remove .NET Delegates 8-40
Calling .NET Methods Asynchronously 8-41
Limitations to Support of .NET Delegates 8-45

.NET Enumerations in MATLAB . 8-46
Overview of .NET Enumerations . 8-46
Default Methods for an Enumeration 8-47
Underlying Values . 8-48
Using the NetDocEnum Example Assembly 8-49
Work with Members of a .NET Enumeration 8-49
Refer to a .NET Enumeration Member 8-51
Display .NET Enumeration Members as Character
Strings . 8-52

Convert .NET Enumeration Values to Type Double 8-52
Iterate Through a .NET Enumeration 8-52
Use .NET Enumerations to Test for Conditions 8-54
Use Bit Flags with .NET Enumerations 8-56
Read Special System Folder Path . 8-59
Limitations to Support of .NET Enumerations 8-60

.NET Generic Classes in MATLAB 8-61
.NET Generic Classes . 8-61
Accessing Items in .NET Collections 8-62
Create .NET Collections . 8-62
Convert .NET Collections to MATLAB Arrays 8-64
Create .NET Arrays of Generic Type 8-65
Call .NET Generic Methods . 8-66
Display .NET Generic Methods Using Reflection 8-68

Troubleshooting Security Policy Settings From
Network Drives . 8-72

xix

Access a Simple .NET Class . 8-73
System.DateTime Example . 8-73
Create .NET Object From Constructor 8-74
View Information About .NET Object 8-74
Introduction to .NET Data Types . 8-77

Load a Global .NET Assembly . 8-79

Pass Numeric Arguments . 8-80
Call .NET Methods with Numeric Arguments 8-80
Use .NET Numeric Types in MATLAB 8-80

Pass System.String Arguments . 8-81
Call .NET Methods with System.String Arguments 8-81
Use System.String in MATLAB . 8-82

Pass System.Enum Arguments . 8-83
Call .NET Methods with System.Enum Arguments 8-83
Use System.Enum in MATLAB . 8-84

Pass System.Nullable Arguments . 8-86

Set Static .NET Properties . 8-91
System.Environment.CurrentDirectory Example 8-91
Do Not Use ClassName.PropertyName Syntax for Static
Properties . 8-92

Use .NET Properties That Take Arguments 8-93

MATLAB Does Not Display Protected Properties 8-94

Examples Using .NET Methods . 8-95
Work with .NET Methods Having Multiple Signatures . . . 8-95
SampleMethods Class . 8-97
Call .NET Methods With out Keyword 8-98
Call .NET Methods With ref Keyword 8-98
Call .NET Methods With params Keyword 8-99

Call .NET Methods with Optional Arguments 8-100

xx Contents

Setting Up the Examples . 8-100
Skip Optional Arguments . 8-100
Call Overloaded Methods . 8-101

Pass Cell Arrays of .NET Data . 8-104
Example of Cell Arrays of .NET Data 8-104
Create a Cell Array for Each System.Object 8-105
Create MATLAB Variables from the .NET Data 8-105
Call MATLAB Functions with MATLAB Variables 8-105

An Assembly is a Library of .NET Classes 8-107

Convert Nested System.Object Arrays 8-108

Passing Data to .NET Objects . 8-109
Pass Primitive .NET Types . 8-109
Pass Cell Arrays . 8-110
Pass Nonprimitive .NET Objects . 8-111
Pass MATLAB Strings . 8-111
Pass System.Nullable Type . 8-111
Pass NULL Values . 8-112
Unsupported MATLAB Types . 8-112
Choosing Method Signatures . 8-112
Example — Choosing a Method Signature 8-113
Pass Arrays . 8-115
Pass MATLAB Arrays as Jagged Arrays 8-115

Handling Data Returned from .NET Objects 8-117
.NET Type to MATLAB Type Mapping 8-117
How MATLAB Handles System.String 8-118
How MATLAB Handles System.__ComObject 8-119
How MATLAB Handles System.Nullable 8-120
How MATLAB Handles dynamic Type 8-121
How MATLAB Handles Jagged Arrays 8-121

Work with Microsoft Excel Spreadsheets Using .NET . . 8-123

Work with Microsoft Word Documents Using .NET . . . 8-125

xxi

Using COM Objects from MATLAB

9
MATLAB COM Integration . 9-2
What Is COM? . 9-2
Concepts and Terminology . 9-3
The MATLAB COM Client . 9-5
The MATLAB COM Automation Server 9-6
Registering Controls and Servers . 9-6

Getting Started with COM . 9-8
Introduction to COM . 9-8
Basic COM Functions . 9-8

Use Internet Explorer Program in aMATLAB Figure . . 9-11
Techniques Demonstrated . 9-11
Using the Figure to Access Properties 9-11
Complete Code Listing . 9-12
Creating the Figure . 9-13
Calculating the ActiveX Object Container Size 9-13
Automatic Resize . 9-14
Selecting Graphics Objects . 9-15
Closing the Figure . 9-16

Add Grid ActiveX Control in a Figure 9-17
Techniques Demonstrated . 9-17
Using the Control . 9-17
Complete Code Listing . 9-18
Preparing to Use the Control . 9-19
Creating a Figure to Contain the Control 9-20
Creating an Instance of the Control 9-21
Using Mouse-Click Event to Plot Data 9-22
Managing Figure Resize . 9-23
Closing the Figure . 9-24

Read Excel Spreadsheet Data . 9-25
Techniques Demonstrated . 9-25
Using the GUI . 9-25
Complete Code Listing . 9-26
Excel Spreadsheet Format . 9-26
Excel Automation Server . 9-27

xxii Contents

Manipulating the Data in the MATLAB Workspace 9-28
The Plotter GUI . 9-29
Inserting MATLAB Graphs Into Excel Spreadsheets 9-31

Supported Client/Server Configurations 9-33
Introduction . 9-33
MATLAB Client and In-Process Server 9-33
MATLAB Client and Out-of-Process Server 9-34
COM Implementations Supported by MATLAB
Software . 9-35

Client Application and MATLAB Automation Server 9-35
Client Application and MATLAB Engine Server 9-37

MATLAB COM Client Support

10
Creating COM Objects . 10-2
Creating the Server Process — An Overview 10-2
Creating an ActiveX Control . 10-3
Creating a COM Server . 10-9

Explore COM Objects . 10-12
About Your Object . 10-12
Exploring Properties . 10-12
Exploring Methods . 10-14
Exploring Events . 10-14
Exploring Interfaces . 10-15
Identifying Objects and Interfaces . 10-16

Use Object Properties . 10-19
About Object Properties . 10-19
Working with Multiple Objects . 10-20
Using Enumerated Values for Properties 10-20
Using the Property Inspector . 10-22
Custom Properties . 10-24
Properties That Take Arguments . 10-25

Use Methods . 10-29
About Methods . 10-29

xxiii

Getting Method Information . 10-30
Invoking Methods on an Object . 10-34
Exceptions to Using Implicit Syntax 10-36
Specifying Enumerated Parameters 10-37
Optional Input Arguments . 10-38
Returning Multiple Output Arguments 10-39
Argument Callouts in Error Messages 10-40

Use Events . 10-42
About Events . 10-42
Functions for Working with Events 10-43
Examples of Event Handlers . 10-43
Responding to Events — an Overview 10-44
Responding to Events — Examples 10-46
Writing Event Handlers . 10-54
Sample Event Handlers . 10-57
Writing Event Handlers as MATLAB Local Functions . . . 10-58

Getting Interfaces to COM Object 10-60
IUnknown and IDispatch Interfaces 10-60
Custom Interfaces . 10-61

Save COM Objects . 10-63
Functions for Saving and Restoring COM Objects 10-63
Releasing COM Interfaces and Objects 10-64

Handling COM Data in MATLAB Software 10-65
Passing Data to COM Objects . 10-65
Handling Data from COM Objects . 10-67
Unsupported Types . 10-68
Passing MATLAB Data to ActiveX Objects 10-69
Passing MATLAB SAFEARRAY to COM Object 10-69
Reading SAFEARRAY from COM Objects in MATLAB
Applications . 10-71

Displaying MATLAB Syntax for COM Objects 10-72

Use MATLAB Application as Automation Client 10-76
MATLAB Sample Control . 10-76
Using a MATLAB Application as an Automation Client . . 10-76
Connecting to an Existing Excel Application 10-78
Running a Macro in an Excel Server Application 10-79
MATLAB COM Client Example . 10-80

xxiv Contents

Deploy ActiveX Controls Requiring Run-Time
Licenses . 10-81
Create a Function to Build the Control 10-81
Build the Control and the License File 10-81
Build the Executable . 10-82
Deploy the Files . 10-82

Use Microsoft Forms 2.0 Controls 10-83
Affected Controls . 10-83
Replacement Controls . 10-83

Use COM Collections . 10-85

Use MATLAB Application as DCOM Client 10-86

MATLAB COM Support Limitations 10-87

MATLAB COM Automation Server Support

11
MATLAB COM Automation Server Interface 11-2
What Is Automation? . 11-2
Creating the MATLAB Server . 11-2
Connecting to an Existing MATLAB Server 11-5

MATLAB Automation Server Functions and
Properties . 11-7
Executing Commands in the MATLAB Server 11-7
Exchanging Data with the Server . 11-9
Controlling the Server Window . 11-10
Terminating the Server Process . 11-10
Client-Specific Information . 11-11
Using the Visible Property . 11-11

Using MATLAB Application as DCOM Server 11-13

Using VT_DATE Data Type . 11-14

xxv

Specifying Shared or Dedicated Server 11-15
Starting a Shared Server . 11-15
Starting a Dedicated Server . 11-15

Manually Create Automation Server 11-16

Launch MATLAB as Automation Server in Desktop
Mode . 11-17

Call MATLAB Function from Visual Basic .NET
Client . 11-18

Call MATLAB Function from Web Application 11-19

Call MATLAB Function from C# Client 11-22

View MATLAB Functions from Visual Basic .NET
Object Browser . 11-24

Using Web Services with MATLAB

12
How You Can Use Web Services with MATLAB 12-2
What Are Web Services in MATLAB? 12-2
What You Need to Use Web Services with MATLAB 12-3
Typical Applications Using Web Services with MATLAB . . 12-4

Ways of Using Web Services in MATLAB 12-5
Two Basic Ways to Access Web Services from MATLAB . . 12-5
How MATLAB Accesses Web Services 12-5

Access Web Services That Use WSDL Documents 12-6
Using the createClassFromWsdl Function 12-6
Example — createClassFromWsdl Function 12-7

xxvi Contents

Access Web Services Using MATLAB SOAP
Functions . 12-10
Using the MATLAB SOAP Functions 12-10
Example — SOAP Functions . 12-10

Considerations When Using Web Services 12-13
XML-MATLAB Data Type Conversion Used in Web
Services . 12-13

Programming with Web Services . 12-14

Where to Get Information About Web Services 12-16
Resources for Web Services and SOAP 12-16
Resources for WSDL . 12-16
Tools for Creating Web Services . 12-16

Serial Port I/O

13
Introduction . 13-2
What Is the MATLAB Serial Port Interface? 13-2
Supported Serial Port Interface Standards 13-3
Supported Platforms . 13-3
Using the Examples with Your Device 13-3

Overview of the Serial Port . 13-5
Introduction . 13-5
What Is Serial Communication? . 13-5
The Serial Port Interface Standard 13-6
Connecting Two Devices with a Serial Cable 13-6
Serial Port Signals and Pin Assignments 13-7
Serial Data Format . 13-11
Finding Serial Port Information for Your Platform 13-16
Using Virtual USB Serial Ports . 13-18
Selected Bibliography . 13-18

Getting Started with Serial I/O . 13-20
Example: Getting Started . 13-20
The Serial Port Session . 13-21
Configuring and Returning Properties 13-22

xxvii

Creating a Serial Port Object . 13-27
Overview of a Serial Port Object . 13-27
Configuring Properties During Object Creation 13-29
The Serial Port Object Display . 13-29
Creating an Array of Serial Port Objects 13-30

Connecting to the Device . 13-32

Configuring Communication Settings 13-33

Writing and Reading Data . 13-34
Before You Begin . 13-34
Example — Introduction to Writing and Reading Data . . . 13-34
Controlling Access to the MATLAB Command Line 13-35
Writing Data . 13-36
Reading Data . 13-42
Example — Writing and Reading Text Data 13-48
Example — Parsing Input Data Using textscan 13-50
Example — Reading Binary Data . 13-51

Events and Callbacks . 13-55
Introduction . 13-55
Example — Introduction to Events and Callbacks 13-56
Event Types and Callback Properties 13-56
Responding To Event Information . 13-59
Creating and Executing Callback Functions 13-61
Enabling Callback Functions After They Error 13-62
Example — Using Events and Callbacks 13-62

Using Control Pins . 13-65
Properties of Serial Port Control Pins 13-65
Signaling the Presence of Connected Devices 13-65
Controlling the Flow of Data: Handshaking 13-68

Debugging: Recording Information to Disk 13-71
Introduction . 13-71
Recording Properties . 13-71
Example: Introduction to Recording Information 13-72
Creating Multiple Record Files . 13-72
Specifying a Filename . 13-73
The Record File Format . 13-73

xxviii Contents

Example: Recording Information to Disk 13-74

Saving and Loading . 13-78
Using save and load . 13-78
Using Serial Port Objects on Different Platforms 13-79

Disconnecting and Cleaning Up . 13-80
Disconnecting a Serial Port Object 13-80
Cleaning Up the MATLAB Environment 13-80

Property Reference . 13-82
The Property Reference Page Format 13-82
Serial Port Object Properties . 13-82

Properties — Alphabetical List . 13-86

Index

xxix

xxx Contents

1

Read and Write MATLAB
MAT-Files in C/C++ and
Fortran

• “Writing Custom Applications to Read and Write MAT-Files” on page 1-2

• “Copy External Data into MAT-File Format with Standalone Programs”
on page 1-8

• “Create MAT-File in C” on page 1-13

• “Create MAT-File in C++” on page 1-14

• “Read MAT-File in C/C++” on page 1-15

• “Create MAT-File in Fortran” on page 1-16

• “Read MAT-File in Fortran” on page 1-17

• “Work with mxArrays” on page 1-18

• “Table of MAT-File Source Code Files” on page 1-21

• “Compiling and Linking MAT-File Programs” on page 1-22

1 Read and Write MATLAB® MAT-Files in C/C++ and Fortran

Writing Custom Applications to Read and Write MAT-Files

In this section...

“Why Write Custom Applications?” on page 1-2

“What You Need” on page 1-3

“MAT-File Interface Library” on page 1-4

“Finding Associated Files” on page 1-5

“Exchanging Data Files Between Platforms” on page 1-6

Why Write Custom Applications?
To bring data into a MATLAB® application, see “Recommended Methods for
Importing Data”. To save data to a MAT-file, see “Save, Load, and Delete
Workspace Variables”. Use these procedures when you program your entire
application in MATLAB, or if you share data with other MATLAB users.
There are situations, however, when you must write a custom program to
interact with data. For example:

• Your data has a custom format.

• You create applications for users who do not run MATLAB, and you want
to provide them with MATLAB data.

• You want to read data from an external application, but you do not have
access to the source code.

Before writing a custom application, determine if MATLAB meets your data
exchange needs by reviewing the following topics:

• The save and load functions.

• “Supported File Formats”.

• The importdata function and “Tips for Using the Import Wizard”.

• “Recommended Methods for Importing Data”.

1-2

Writing Custom Applications to Read and Write MAT-Files

If these features are not sufficient, you can create custom C/C++ or Fortran
programs to read and write data files in the format required by your
application. There are two types of custom programs:

• Standalone program — Run from a system prompt or execute in MATLAB
(see Run External Commands, Scripts, and Programs). Requires MATLAB
libraries to build the application.

• MEX-file — Built and executed from the MATLAB command prompt.
For information about creating and building MEX-Files, see “Introducing
MEX-Files” on page 3-2.

What You Need
To create a custom application, you need the tools and knowledge to modify
and build source code. In particular, you need a compiler supported by
MATLAB. For an up-to-date list of supported compilers, see the Supported
and Compatible Compilers Web page.

To exchange custom data with MATLAB data, use a MAT-file, a MATLAB
format binary file. You need to know the details of your data to map it into
MATLAB data. Get this information from your product documentation. Use
the mxArray type in the MX Matrix Library for data in your program.

In your custom program, use functions in the MATLAB C/C++ and Fortran
API:

• “MAT-Function Include Files” on page 1-5

• “MAT-File Interface Library” on page 1-4

• MX Matrix Library

To build the application, use the mex build script with the compiler-specific
options file for MAT-file applications. MATLAB provides the header files and
libraries, and guidance for creating a build script. For names and locations of
required files, see “MAT-Function Libraries” on page 1-6.

You can also use your own build tools.

1-3

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

1 Read and Write MATLAB® MAT-Files in C/C++ and Fortran

MAT-File Interface Library
The MAT-File Library contains routines for reading and writing MAT-files.
Call these routines from your own C/C++ and Fortran programs. Use these
routines, rather than attempt to write your own code, to perform these
operations, since using the library insulates your applications from future
changes to the MAT-file structure.

MATLAB provides the MATFile type for representing a MAT-file.

Do not create different MATLAB sessions on different threads using MAT-File
Library functions. MATLAB libraries are not multithread safe so you can use
these functions only on a single thread at a time.

Functions in the MAT-file Library, described in the following tables, begin
with the three-letter prefix mat.

MAT-File Routines

MAT-Function Purpose

matOpen Open a MAT-file.

matClose Close a MAT-file.

matGetDir Get a list of MATLAB arrays from a
MAT-file.

matGetVariable Read a MATLAB array from a MAT-file.

matPutVariable Write a MATLAB array to a MAT-file.

matGetNextVariable Read the next MATLAB array from a
MAT-file.

matDeleteVariable Remove a MATLAB array from a MAT-file.

matPutVariableAsGlobal Put a MATLAB array into a MAT-file such
that the load command places it into the
global workspace.

matGetVariableInfo Load a MATLAB array header from a
MAT-file (no data).

matGetNextVariableInfo Load the next MATLAB array header from
a MAT-file (no data).

1-4

Writing Custom Applications to Read and Write MAT-Files

MAT-File C-Only Routines

matGetFp Get an ANSI® C file pointer to a MAT-file.

Note The MAT-File Interface Library does not support MATLAB objects
created by user-defined classes.

Finding Associated Files
MATLAB provides the include and library files needed to write programs
to read and write MAT-files. The following table lists the path names to
these files. The term matlabroot refers to the root folder of your MATLAB
installation. The term arch is a unique string identifying the platform.

MAT-Function Folders

Platform Contents Folder

Include files matlabroot\extern\include

Libraries matlabroot\bin\win32 or
matlabroot\bin\win64

Microsoft®

Windows®

Examples matlabroot\extern\examples\eng_mat

Include files matlabroot/extern/include

Libraries matlabroot/bin/arch

UNIX®

Examples matlabroot/extern/examples/eng_mat

MAT-Function Include Files
The include folder holds header files containing function declarations with
prototypes for the routines that you can access in the API Library. These files
are the same for both Windows and UNIX systems. The folder contains:

• The matrix.h header file that contains a definition of the mxArray
structure and function prototypes for matrix access routines.

• The mat.h header file that contains function prototypes for mat routines.

1-5

1 Read and Write MATLAB® MAT-Files in C/C++ and Fortran

MAT-Function Libraries
The name of the libraries folder, which contains shared (dynamically linkable)
libraries for linking your programs, is platform-dependent.

Shared Libraries on Windows Systems. The bin folder contains the
shared libraries for linking your programs:

• The libmat.dll library of MAT-file routines (C/C++ and Fortran)

• The libmx.dll library of array access and creation routines

Shared Libraries on UNIX Systems. The bin/arch folder, where arch is
your machine’s architecture, contains the shared libraries for linking your
programs. For example, on Apple Macintosh 64-bit systems, the folder is
bin/maci64:

• The libmat.dylib library of MAT-file routines (C/C++ and Fortran)

• The libmx.dylib library of array access and creation routines

Example Files
The examples/eng_mat folder contains C/C++ and Fortran source code for
examples demonstrating how to use the MAT-file routines.

Exchanging Data Files Between Platforms
You can work with MATLAB software on different computer systems and
send MATLAB applications to users on other systems. MATLAB applications
consist of MATLAB code containing functions and scripts, and MAT-files
containing binary data.

Both types of files can be transported directly between machines: MATLAB
source files because they are platform independent, and MAT-files because
they contain a machine signature in the file header. MATLAB checks the
signature when it loads a file and, if a signature indicates that a file is foreign,
performs the necessary conversion.

Using MATLAB across different machine architectures requires a facility for
exchanging both binary and ASCII data between the machines. Examples
of this type of facility include FTP, NFS, and Kermit. When using these

1-6

Writing Custom Applications to Read and Write MAT-Files

programs, be careful to transmit MAT-files in binary file mode and MATLAB
source files in ASCII file mode. Failure to set these modes correctly corrupts
the data.

1-7

1 Read and Write MATLAB® MAT-Files in C/C++ and Fortran

Copy External Data into MAT-File Format with Standalone
Programs

In this section...

“Overview of matimport.c Example” on page 1-8

“Declare Variables for External Data” on page 1-9

“Create mxArray Variables” on page 1-10

“Create MATLAB Variable Names” on page 1-10

“Read External Data into mxArray Data” on page 1-10

“Create and Open MAT-File” on page 1-11

“Write mxArray Data to File” on page 1-11

“Clean Up” on page 1-11

“Build the Application” on page 1-11

“Create the MAT-File” on page 1-12

“Import Data into MATLAB” on page 1-12

Overview of matimport.c Example
This topic shows how to create a standalone program, matimport, to copy data
from an external source into a MAT-file. The format of the data is custom,
that is, it is not one of the file formats supported by MATLAB.

The matimport.c example:

• Creates variables to read the external data.

• Copies the data into mxArray variables.

• Assigns a variable name to each mxArray. This is the variable name to use
in the MATLAB workspace.

• Writes the mxArray variables and associated variable names to the
MAT-file.

To use the data in MATLAB:

1-8

Copy External Data into MAT-File Format with Standalone Programs

• Build the standalone program matimport.

• Run matimport to create the MAT-file matimport.mat.

• Open MATLAB.

• Use one of the techniques described in “Save, Load, and Delete Workspace
Variables”.

The following topics describe these steps in detail. To see the code, open
the file in the MATLAB Editor. The C statements in these topics are code
snippets shown to illustrate a task. The statements in the topics are not
necessarily sequential in the source file.

Declare Variables for External Data
There are two external data values, a string and an array of type double. The
following table shows the relationship between the variables in this example.

External Data Variable to
Read External
Data

mxArray
Variable

MATLAB
Variable Name

Array of type
double

extData pVarNum inputArray

String extString pVarChar titleString

The following statements declare the type and size for variables extString
and extData:

#define BUFSIZE 256
char extString[BUFSIZE];
double extData[9];

Use these variables to read values from a file or a subroutine available from
your product. This example uses initialization to create the external data:

const char *extString = "Data from External Device";
double extData[9] = { 1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0 };

1-9

1 Read and Write MATLAB® MAT-Files in C/C++ and Fortran

Create mxArray Variables
The MAT-File Library uses pointers of type mxArray to reference MATLAB
data. The following statements declare pVarNum and pVarChar as pointers to
an array of any size or type:

/*Pointer to the mxArray to read variable extData */
mxArray *pVarNum;
/*Pointer to the mxArray to read variable extString */
mxArray *pVarChar;

To create a variable of the proper size and type, select one of the mxCreate*
functions from the MX Matrix Library.

The size of extData is 9, which the example copies into a 3-by-3 matrix.
Use the mxCreateDoubleMatrix function to create a two-dimensional,
double-precision, floating-point mxArray initialized to 0.

pVarNum = mxCreateDoubleMatrix(3,3,mxREAL);

Use the mxCreateString function to create an mxArray variable for
extString:

pVarChar = mxCreateString(extString);

Create MATLAB Variable Names
matimport.c assigns variable names inputArray and titleString to the
mxArray data. Use these names in the MATLAB workspace. For more
information, see “View the Contents of a MAT-File”.

const char *myDouble = "inputArray";
const char *myString = "titleString";

Read External Data into mxArray Data
Copy data from the external source into each mxArray.

The C memcpy function copies blocks of memory. This function requires
pointers to the variables extData and pVarNum. The pointer to extData
is (void *)extData. To get a pointer to pVarNum, use one of the mxGet*
functions from the MX Matrix Library. Since the data contains only real
values of type double, this example uses the mxGetPr function:

1-10

Copy External Data into MAT-File Format with Standalone Programs

memcpy((void *)(mxGetPr(pVarNum)), (void *)extData, sizeof(extData));

The following statement initializes the pVarChar variable with the contents of
extString:

pVarChar = mxCreateString(extString);

Variables pVarNum and pVarChar now contain the external data.

Create and Open MAT-File
The matOpen function creates a handle to a file of type MATFile. The following
statements create a file pointer pmat, name the file matimport.mat, and open
it for writing:

MATFile *pmat;
const char *myFile = "matimport.mat";
pmat = matOpen(myFile, "w");

Write mxArray Data to File
The matPutVariable function writes the mxArray and variable name into
the file:

status = matPutVariable(pmat, myDouble, pVarNum);
status = matPutVariable(pmat, myString, pVarChar);

Clean Up
To close the file:

matClose(pmat);

To free memory:

mxDestroyArray(pVarNum);
mxDestroyArray(pVarChar);

Build the Application
To build the application, use the mex function with the appropriate MAT
options file. For more information, see “Compiling and Linking MAT-File
Programs” on page 1-22.

1-11

1 Read and Write MATLAB® MAT-Files in C/C++ and Fortran

For example, to use the Microsoft Visual C++® Version 8.0 compiler, select it
as described in “Selecting a Compiler on Windows Platforms” on page 3-28.
The options file for this compiler is msvc80engmatopts.bat. Use the following
MATLAB commands to build matimport:

% Create full path name for options file
optionsfile = fullfile(matlabroot, ...

'bin', 'win32', 'mexopts', 'msvc80engmatopts.bat');
mex('-v', '-f', optionsfile, 'matimport.c')

Create the MAT-File
Run matimport to create the file matimport.mat. Either invoke the program
from the system command prompt, or at the MATLAB command prompt, type:

!matimport

Import Data into MATLAB
Any user with a compatible version of MATLAB can read the matimport.mat
file. Start MATLAB and use the load command to import the data into the
workspace:

load matimport.mat

To see the variables, type whos; MATLAB displays:

Name Size Bytes Class

inputArray 3x3 72 double
titleString 1x43 86 char

1-12

Create MAT-File in C

Create MAT-File in C
The matcreat.c example illustrates how to use the library routines to create
a MAT-file that you can load into the MATLAB workspace. The program also
demonstrates how to check the return values of MAT-function calls for read or
write failures. To see the code, open the file in MATLAB Editor.

To produce an executable version of this program, compile the file and link it
with the appropriate library. For details on platform specifics, see “Compiling
and Linking MAT-File Programs” on page 1-22.

After compiling and linking your MAT-file program, you can run the
standalone application you just produced. This program creates mattest.mat,
a MAT-file that you can load into MATLAB. To run the application, depending
on your platform, either double-click its icon or enter matcreat at the system
prompt:

matcreat
Creating file mattest.mat...

To verify the MAT-file, at the command prompt, type:

whos -file mattest.mat
Name Size Bytes Class

GlobalDouble 3x3 72 double array (global)
LocalDouble 3x3 72 double array
LocalString 1x43 86 char array

Grand total is 61 elements using 230 bytes

1-13

1 Read and Write MATLAB® MAT-Files in C/C++ and Fortran

Create MAT-File in C++
There is a C++ version of matcreat.c in the
matlabroot\extern\examples\eng_mat folder. To see matcreat.cpp, open
the file in MATLAB Editor.

1-14

Read MAT-File in C/C++

Read MAT-File in C/C++
The matdgns.c example illustrates how to use the library routines to read
and diagnose a MAT-file. To see the code, open the file in MATLAB Editor.

After compiling and linking this program, you can view its results:

matdgns mattest.mat
Reading file mattest.mat...

Directory of mattest.mat:
GlobalDouble
LocalString
LocalDouble

Examining the header for each variable:
According to its header, array GlobalDouble has 2 dimensions

and was a global variable when saved
According to its header, array LocalString has 2 dimensions

and was a local variable when saved
According to its header, array LocalDouble has 2 dimensions

and was a local variable when saved

Reading in the actual array contents:
According to its contents, array GlobalDouble has 2 dimensions

and was a global variable when saved
According to its contents, array LocalString has 2 dimensions

and was a local variable when saved
According to its contents, array LocalDouble has 2 dimensions

and was a local variable when saved
Done

1-15

1 Read and Write MATLAB® MAT-Files in C/C++ and Fortran

Create MAT-File in Fortran
The matdemo1.F example creates the MAT-file, matdemo.mat. To see the code,
you can open the file in MATLAB Editor.

After compiling and linking your MAT-file program, you can run the
standalone application you just produced. This program creates a MAT-file,
matdemo.mat, that you can load into MATLAB. To run the application,
depending on your platform, either double-click its icon or enter matdemo1
at the system prompt:

matdemo1
Creating MAT-file matdemo.mat ...
Done creating MAT-file

To verify the MAT-file, at the command prompt, enter:

whos -file matdemo.mat
Name Size Bytes Class

Numeric 3x3 72 double array
String 1x33 66 char array

Grand total is 42 elements using 138 bytes

Note For an example of a Microsoft Windows standalone
program (not MAT-file specific), see engwindemo.c in the
matlabroot\extern\examples\eng_mat folder.

1-16

Read MAT-File in Fortran

Read MAT-File in Fortran
The matdemo2.F example illustrates how to use the library routines to read
the MAT-file created by matdemo1.F and describe its contents. To see the
code, open the file in MATLAB Editor.

After compiling and linking this program, you can view its results:

matdemo2
Directory of Mat-file:
String
Numeric
Getting full array contents:

1
Retrieved String

With size 1-by- 33
3

Retrieved Numeric
With size 3-by- 3

1-17

1 Read and Write MATLAB® MAT-Files in C/C++ and Fortran

Work with mxArrays

In this section...

“Read Structures from a MAT-File” on page 1-18

“Read Cell Arrays from a MAT-File” on page 1-19

The MAT-File Interface Library lets you access MATLAB arrays (type
mxArray) in a MAT-file. To work directly with an mxArray in a C/C++ or
Fortran application, use functions in the MX Matrix Library. The options files
already link to this library, as described in “What You Need” on page 1-3.

You can find examples for working with mxArrays in the
matlabroot/extern/examples/mex and matlabroot/extern/examples/mx
folders. The following topics show C code examples, based on these MEX
examples, for working with cells and structures. The examples show how to
read cell and structure arrays and display information based on the type of
the mxArray within each array element.

If you create an application from one of the MEX examples, here are some tips
for adapting the code to a standalone application.

• The MAT-file example, matdgns.c, shows how to open and read a MAT-file.
For more information about the example, see “Read MAT-File in C/C++”
on page 1-15.

• The MEX example, explore.c, has functions to read any MATLAB type
using the mxClassID function. For more information about the example,
see “Using Data Types” on page 3-23.

• Some MEX examples use functions, such as mexPrintf, from the MEX
Library libmex. (For a complete list of the C functions, see “Build C/C++
MEX-Files”.) You do not need to use these functions to work with an
mxArray, but if your program calls any of them, you must link to the MEX
Library. To do this, modify your options file to add libmex.lib to the
link statement.

Read Structures from a MAT-File
The matreadstructarray.c example is based on the analyze_structure
function in explore.c. For simplicity this example only processes real

1-18

Work with mxArrays

elements of type double; refer to the explore.c example for error checking
and processing other types.

To see the code, open the file in the MATLAB Editor.

After compiling and linking your MAT-file program, you can run the
standalone application on the following MAT-file, testpatient.mat. Create a
structure, patient, and save it:

patient(1).name = 'John Doe';
patient(1).billing = 127.00;
patient(1).test = [79 75 73; 180 178 177.5; 172 170 169];
patient(2).name = 'Ann Lane';
patient(2).billing = 28.50;
patient(2).test = [68 70 68; 118 118 119; 172 170 169];

save('testpatient.mat')

To calculate the total of the billing field, type:

!matreadstruct testpatient.mat patient billing

Total for billing: 155.50

Read Cell Arrays from a MAT-File
The matreadcellarray.c example is based on the analyze_cell function in
explore.c.

To see the code, open the file in the MATLAB Editor.

After compiling and linking your MAT-file program, you can run the
standalone application on the following MAT-file, testcells.mat. Create 3
cell variables and save:

cellvar = {'hello'; [2 3 4 6 8 9]; [2; 4; 5]};
structvar = {'cell with a structure'; patient; [2; 4; 5]};
multicellvar = {'cell with a cell'; cellvar; patient};
save('testcells.mat','cellvar','structvar','multicellvar')

To display the mxArray type for the contents of cell cellvar, type:

1-19

1 Read and Write MATLAB® MAT-Files in C/C++ and Fortran

!matreadcell testcells.mat cellvar

0: string
1: numeric class
2: numeric class

1-20

Table of MAT-File Source Code Files

Table of MAT-File Source Code Files
The matlabroot/extern/examples/eng_mat folder contains C/C++ and
Fortran source code for examples demonstrating how to use the MAT-file
routines. These examples create standalone programs. The source code is the
same for both Windows and UNIX systems.

Example Description

matcreat.c C program that demonstrates how to use the library
routines to create a MAT-file that you can load into
MATLAB.

matcreat.cpp C++ version of the matcreat.c program.

matdgns.c C program that demonstrates how to use the library
routines to read and diagnose a MAT-file.

matdemo1.F Fortran program that demonstrates how to call the
MATLAB MAT-file functions from a Fortran program.

matdemo2.F Fortran program that demonstrates how to use the
library routines to read the MAT-file created by
matdemo1.F and describe its contents.

matimport.c C program based on matcreat.c used in the example for
writing standalone applications.

matreadstructarray.cC program based on explore.c to read contents of a
structure array.

matreadcellarray.cC program based on explore.c to read contents of a cell
array.

1-21

1 Read and Write MATLAB® MAT-Files in C/C++ and Fortran

Compiling and Linking MAT-File Programs

In this section...

“Building on UNIX Operating Systems” on page 1-22

“Building on Windows Operating Systems” on page 1-23

“Deploying MAT-File Applications” on page 1-24

Building on UNIX Operating Systems
To build on a UNIX operating system, refer to “Setting Run-Time Library
Path” on page 1-22 and “Using the Options File” on page 1-23.

Setting Run-Time Library Path
At run time, you must tell the UNIX operating system where the API shared
libraries reside by setting an environment variable. The UNIX command you
use and the values you provide depend on your shell and system architecture.
The following table lists the name of the environment variable (envvar) and
the values (pathspec) to assign to it. The term matlabroot refers to the root
folder of your MATLAB installation.

Operating
System envvar pathspec

64-bit Linux® LD_LIBRARY_PATH matlabroot/bin/glnxa64:
matlabroot/sys/os/glnxa64

64-bit Apple
Macintosh
(Intel®)

DYLD_LIBRARY_PATH matlabroot/bin/maci64:
matlabroot/sys/os/maci64

Using the C Shell. Set the library path using the command:

setenv envvar pathspec

Replace the terms envvar and pathspec with the appropriate values from the
table. For example, on a Macintosh system use:

setenv DYLD_LIBRARY_PATH

1-22

Compiling and Linking MAT-File Programs

matlabroot/bin/maci64:matlabroot/sys/os/maci64

You can place these commands in a startup script, such as ~/.cshrc.

Using the Bourne Shell. Set the library path using the command:

envvar = pathspec:envvar
export envvar

Replace the terms envvar and pathspec with the appropriate values from the
table. For example, on a Macintosh system use:

DYLD_LIBRARY_PATH=matlabroot/bin/maci64:matlabroot/sys/os/maci64:$DYLD_LIBRARY_PATH

export DYLD_LIBRARY_PATH

You can place these commands in a startup script such as ~/.profile.

Using the Options File
The MATLAB options file for UNIX systems, matopts.sh, lets you use the
mex script to easily compile and link MAT-file applications. The options file
is in matlabroot/bin. Use the -f switch to specify the name and location of
the options file.

For example, to compile and link the matcreat.c example, first copy the file
to a writable folder, such as c:\work, on your path:

copyfile(fullfile(matlabroot, 'extern', 'examples', 'eng_mat', ...
'matcreat.c'), fullfile('c:', 'work'));

Use the following command to build it:

mex('-v', '-f', [matlabroot '/bin/matopts.sh'], 'matcreat.c')

If you need to modify the options file for your particular compiler or platform,
use the -v switch to view the current compiler and linker settings. Then,
make the appropriate changes in a local copy of the matopts.sh file.

Building on Windows Operating Systems
To compile and link MAT-file programs, use the mex script with a MAT options
file. Use the -f switch to specify the name and location of the options file.

1-23

1 Read and Write MATLAB® MAT-Files in C/C++ and Fortran

There are different options files for the supported compilers and operating
systems, as shown in the following table.

Operating
System Default Options File

32-bit Windows matlabroot\bin\win32\mexopts*engmatopts.bat

64-bit Windows matlabroot\bin\win64\mexopts*engmatopts.bat

The * character in the file name, *engmatopts.bat, represents the compiler
type and version. For example, the options file to use with the Microsoft
Visual C++ Version 9.0 compiler is msvc90engmatopts.bat. To build the
matcreat.c application with this compiler, first copy the following file to a
writable folder, such as c:\work, on your path:

copyfile(fullfile(matlabroot, 'extern', 'examples', 'eng_mat', ...
'matcreat.c'), fullfile('c:', 'work'));

Use the following command to build it:

mex('-v', '-f', [matlabroot ...
'\bin\win32\mexopts\msvc90engmatopts.bat'], ...
'matcreat.c');

If you need to modify the options file for your particular compiler, use the
-v switch to view the current compiler and linker settings. Then, make the
appropriate changes in a local copy of the options file.

Deploying MAT-File Applications
MATLAB requires the following data and library files for building any
MAT-file application. You must also distribute these files along with any
MAT-file application that you deploy to another system.

Third-Party Data Files
When building a MAT-file application on your system or deploying a MAT-file
application to some other system, make sure that the appropriate Unicode®

data file is in the matlabroot/bin/arch folder. MATLAB uses this file to
support Unicode encoding. For systems that order bytes in a big-endian

1-24

Compiling and Linking MAT-File Programs

manner, use icudt40b.dat. For systems that order bytes in a little-endian
manner, use icudt40l.dat.

For deployed applications, be sure to distribute the MATLAB lcdata.xml file
from the matlabroot/bin/ folder, and the matlabroot/resources/MATLAB/
folder with your standalone program.

Third-Party Libraries
When building a MAT-file application on your system or deploying a MAT-file
application to some other system, make sure to install the appropriate
libraries in the matlabroot/bin/arch folder:

Library File Names by Operating System

Windows Linux Macintosh (Intel)

libmat.dll libmat.so libmat.dylib

libmx.dll libmx.so libmx.dylib

In addition to these libraries, you must have all third-party library files that
libmat requires. MATLAB uses these additional libraries to support Unicode
character encoding and data compression in MAT-files. These library files
must reside in the same folder as libmx. Determine the libraries using the
platform-specific methods described in the following table.

Library Dependency Commands

Windows Linux Macintosh

Use “Dependency
Walker” on page 1-25

ldd -d libmat.so otool -L
libmat.dylib

Dependency Walker. On Windows systems, to find library dependencies,
use the third-party product Dependency Walker. Dependency Walker is a
free utility that scans any 32-bit or 64-bit Windows module and builds a
hierarchical tree diagram of all dependent modules. For each module found, it
lists all the functions that are exported by that module, and which of those
functions are called by other modules. Download the Dependency Walker
utility from the following Web site:

1-25

1 Read and Write MATLAB® MAT-Files in C/C++ and Fortran

http://www.dependencywalker.com/

See the Technical Support solution 1-2RQL4L at
http://www.mathworks.com/support/solutions/data/1-2RQL4L.html for
information on using the Dependency Walker.

Drag and drop the file matlabroot/bin/win32/libmat.dll or
matlabroot/bin/win64/libmat.dll into Depends window.

1-26

http://www.dependencywalker.com/

http://www.mathworks.com/support/solutions/data/1-2RQL4L.html

2

Calling C Shared Library
Functions from MATLAB

• “Calling Functions in Shared Libraries” on page 2-3

• “Limitations to Shared Library Support” on page 2-9

• “Troubleshooting Shared Library Applications” on page 2-14

• “Module Not Found Error” on page 2-15

• “No Matching Signature Error” on page 2-16

• “MATLAB Crashes Making a Function Call to a Shared Library” on page
2-17

• “Passing Arguments to Shared Library Functions” on page 2-18

• “Shared Library shrlibsample.c” on page 2-23

• “Pass String Arguments” on page 2-25

• “Pass Structures” on page 2-27

• “Pass Enumerated Types” on page 2-30

• “Pass Pointers” on page 2-32

• “Pass Arrays” on page 2-33

• “Iterate Through an Array” on page 2-36

• “Working with Pointer Arguments” on page 2-39

• “Working with Structure Arguments” on page 2-53

• “Work with libstruct Objects” on page 2-55

• “MATLAB Prototype Files” on page 2-57

2 Calling C Shared Library Functions from MATLAB®

• “Create Alias Function Name Using Prototype File” on page 2-60

2-2

Calling Functions in Shared Libraries

Calling Functions in Shared Libraries

In this section...

“What Is a Shared Library?” on page 2-3

“Selecting a C Compiler” on page 2-4

“Loading and Unloading the Library” on page 2-4

“Viewing Library Functions” on page 2-5

“Invoking Library Functions” on page 2-8

What Is a Shared Library?
A shared library is a collection of functions designed to be dynamically loaded
by an application at run time. This MATLAB interface supports libraries
containing functions programmed in any language, provided the functions
have a C interface. MATLAB supports dynamic linking on all supported
platforms.

Platform Shared Library File Extension

Microsoft Windows dynamic link library file .dll

UNIX and Linux shared object file .so

Apple Macintosh dynamic shared library .dylib

A shared library needs a header file, which provides signatures for the
functions in the library. A function signature, or prototype, establishes the
name of the function and the number and types of its parameters. You need
to know the full path of the shared library and its header file. You also need
to select a C compiler using the mex -setup command.

MATLAB accesses C routines built into external, shared libraries through a
command-line interface. This interface lets you load an external library into
MATLAB memory and access functions in the library. Although types differ
between the two language environments, in most cases you can pass types to
the C functions without converting. MATLAB does this for you.

Details about using a shared library are in the topics:

2-3

2 Calling C Shared Library Functions from MATLAB®

• “Selecting a C Compiler” on page 2-4

• “Loading and Unloading the Library” on page 2-4

• “Viewing Library Functions” on page 2-5

• “Invoking Library Functions” on page 2-8

To call a library function, you need to determine the data passed to and from
the function. For information about data, see:

• “Passing Arguments to Shared Library Functions” on page 2-18

• “Manually Converting Data Passed to Functions” on page 2-22

• “Working with Pointer Arguments” on page 2-39

• “Working with Structure Arguments” on page 2-53

When you are finished working with the shared library, it is important to
unload the library to free memory.

For more information, see “Limitations to Shared Library Support” on page
2-9

Selecting a C Compiler
To select a C/C++ compiler, run the mex -setup command before using
loadlibrary, as described in “Selecting a Compiler on Windows Platforms”
on page 3-28 and “Selecting a Compiler on UNIX Platforms” on page 3-33.

Loading and Unloading the Library
To give MATLAB software access to functions in a shared library, you must
first load the library into memory. After you load the library, you can request
information about library functions and call them directly from the MATLAB
command line. When you no longer need the library, unload it from memory
to conserve memory usage.

To load a shared library into MATLAB, use the loadlibrary function. The
most common syntax for the loadlibrary function is:

loadlibrary('shrlib','hfile')

2-4

Calling Functions in Shared Libraries

where shrlib is the shared library file name, and hfile is the name of the
header file containing the function prototypes. See the loadlibrary reference
page for variations in the syntax and information on library file extensions.

Note The header file provides signatures for the functions in the library and
is a required argument for loadlibrary.

For example, you can use loadlibrary to load the libmx library that defines
the MATLAB mx routines. The following command creates the full path for
the library header file, matrix.h:

hfile = fullfile(matlabroot,'extern','include','matrix.h');

To load the library, type:

loadlibrary('libmx',hfile)

Use the unloadlibrary function to unload the library and free up memory.

Viewing Library Functions

• “Viewing Functions in the Command Window” on page 2-5

• “Viewing Functions in a GUI” on page 2-7

• “Viewing Functions in the Command Window” on page 2-5

• “Viewing Functions in a GUI” on page 2-7

Viewing Functions in the Command Window
Use the libfunctions command to display information about a library’s
functions in the MATLAB Command Window. For example, to see what
functions are available in the libmx library, type:

if not(libisloaded('libmx'))
hfile = [matlabroot '\extern\include\matrix.h'];
loadlibrary('libmx',hfile)

end

2-5

2 Calling C Shared Library Functions from MATLAB®

libfunctions libmx

MATLAB displays (in part):

Functions in library libmx:

mxAddField mxGetScalar
mxArrayToString mxGetString_730
mxCalcSingleSubscript_730 mxGetUserBits
mxCalloc mxIsCell
mxCreateCellArray_730 mxIsChar
mxCreateCellMatrix_730 mxIsClass

. .

. .

. .

To view function signatures, use the -full switch. This shows the MATLAB
syntax for calling functions written in C. The types used in the argument lists
and return values are MATLAB types, not C types. For more information on
types, see “C and MATLAB Equivalent Types” on page 2-18. For example,
at the command line enter:

list = libfunctions('libmx','-full')

MATLAB displays (in part):

list =

'[int32, MATLAB array, cstring] mxAddField(MATLAB array, cstring)'
'[cstring, MATLAB array] mxArrayToString(MATLAB array)'
'[uint64, MATLAB array, uint64Ptr] mxCalcSingleSubscript_730(MATLAB array,
'lib.pointer mxCalloc(uint64, uint64)'
'[MATLAB array, uint64Ptr] mxCreateCellArray_730(uint64, uint64Ptr)'
'MATLAB array mxCreateCellMatrix_730(uint64, uint64)'

.

.

.

2-6

Calling Functions in Shared Libraries

Viewing Functions in a GUI
Use the libfunctionsview function to get information about functions in a
library. MATLAB creates a new window to display the following information:

Heading Description

Return Type Types the method returns

Name Function name

Arguments Valid types for input arguments

To see the functions in the libmx library, type:

if not(libisloaded('libmx'))
hfile = [matlabroot '\extern\include\matrix.h'];
loadlibrary('libmx',hfile)

end
libfunctionsview libmx

MATLAB displays the following window:

The types used in the argument lists and return values are MATLAB types,
not C types. For more information on types, see “C and MATLAB Equivalent
Types” on page 2-18.

2-7

2 Calling C Shared Library Functions from MATLAB®

Invoking Library Functions
After loading a shared library into the MATLAB workspace, use the calllib
function to call functions in the library. The syntax for calllib is:

calllib('libname','funcname',arg1,...,argN)

You need to specify the library name, function name, and any arguments that
get passed to the function.

The following example calls functions from the libmx library. To load the
library, type:

if not(libisloaded('libmx'))
hfile = [matlabroot '\extern\include\matrix.h'];
loadlibrary('libmx',hfile);

end

To create an array y, type:

y = rand(4,7,2);

To get information about y, type:

calllib('libmx','mxGetNumberOfElements',y)

ans =
56

MATLAB displays the number of elements in the array.

Type:

calllib('libmx','mxGetClassID',y)

ans =
mxDOUBLE_CLASS

MATLAB displays the class of the array.

For information on how to define the argument types, see “Passing Arguments
to Shared Library Functions” on page 2-18.

2-8

Limitations to Shared Library Support

Limitations to Shared Library Support

In this section...

“MATLAB Supports C Library Routines” on page 2-9

“Workarounds for Loading C++ Libraries” on page 2-9

“Using Bit Fields” on page 2-10

“Using Enum Declarations” on page 2-11

“Unions Not Supported” on page 2-11

“Compiler Dependencies” on page 2-12

“Limitations Using Structures” on page 2-12

“Limitations Using Pointers” on page 2-12

“Functions with Variable Number of Input Arguments Not Supported”
on page 2-13

MATLAB Supports C Library Routines
The MATLAB shared library interface supports C library routines only. Most
professionally-written libraries designed to be used by multiple languages
and platforms work fine. Many homegrown libraries or libraries that have
only been tested from C++ have interfaces that are not usable and require
modification or an interface layer. In this case, we recommend using
MEX-files, as described in “C/C++ Source MEX-Files” on page 4-2.

Workarounds for Loading C++ Libraries
The shared library interface does not support C++ classes or overloaded
functions elements. However, you can apply one of the following methods to
load a C++ library using loadlibrary.

Declare Functions as extern C
For example, the following function prototype from the file shrlibsample.h
shows the syntax to use for each function:

#ifdef __cplusplus
extern "C" {

2-9

2 Calling C Shared Library Functions from MATLAB®

#endif
void addMixedTypes(

short x,
int y,
double z

);

/* other prototypes may be here */

#ifdef __cplusplus
}
#endif

The following C++ code is not legal C code for the header file:

extern "C" void addMixedTypes(short x,int y,double z);

Add Module Definition File in Visual Studio
While building the DLL from C++ code in Microsoft Visual Studio®, add a
Module Definition File (.DEF) in the project. At a minimum, the DEF file
must contain the following module-definition statements:

• The first statement in the file must be the LIBRARY statement.

• The EXPORTS statement lists the names and, optionally, the ordinal
values of the functions exported by the DLL.

For example, if a DLL exports functions multDoubleArray and
addMixedTypes, module.def contains:

LIBRARY
EXPORTS
multDoubleArray
addMixedTypes

Using Bit Fields
You can modify a bit field declaration by using type int or an equivalent. For
example, if your library has the following declared in its header file:

int myfunction();

2-10

Limitations to Shared Library Support

struct mystructure
{

/* note the sum of fields bits */
unsigned field1 :4;
unsigned field2 :4;

};

you can replace it with:

int myfunction();

struct mystructure
{

/* field 8 bits wide to be manipulated in MATLAB */
char allfields; /* A char is 8 bits on all supported platforms */

};

It is then possible to access the data in the two fields using bit masking in
MATLAB.

Using Enum Declarations
char definitions for enum are not supported. In C a char constant `A'
for instance is automatically converted to its numeric equivalent (65) but
MATLAB does not do this so the header file must be modified first replacing
`A' with the number 65 (int8(`A') == 65). For example, replace:

enum Enum1 {ValA='A',ValB='B'};

with:

enum Enum1 {ValA=65,ValB=66};

Unions Not Supported
Unions are not supported. It may be possible to modify the source code taking
out the union declaration and replacing it with the largest alternative, then
writing MATLAB code to interpret the results as needed. For example,
replace the following union:

struct mystruct

2-11

2 Calling C Shared Library Functions from MATLAB®

{
union
{

struct {char byte1,byte2;};
short word;

};
};

with:

struct mystruct
{

short word;
};

where on a little-endian based machine, byte1 is mod(f,256), byte2 is f/256,
and word=byte2*256+byte1.

Compiler Dependencies
Header files must be compatible with the supported compilers on a platform.
For an up-to-date list of supported compilers, see the Supported and
Compatible Compilers Web page. You cannot load external libraries with
explicit dependencies on other compilers.

Limitations Using Structures
Nested structures or structures containing a pointer to a structure are not
supported. However, MATLAB can access an array of structures created
in an external library.

Limitations Using Pointers

Function Pointers
The shared library interface does not support library functions that work
with function pointers.

2-12

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

Limitations to Shared Library Support

Multilevel Pointers
Limited support for multilevel pointers and structures containing pointers.
Using inputs and outputs and structure members declared with more then
two levels of indirection is unsupported. For example, double ***outp
translated to doublePtrPtrPtr is not supported.

Functions with Variable Number of Input Arguments
Not Supported
The shared library interface does not support library functions with variable
number of arguments, which are represented by an ellipsis (...).

You can create multiple alias functions in a prototype file, one for each set
of arguments used to call the function. For more information, see “MATLAB
Prototype Files” on page 2-57.

2-13

2 Calling C Shared Library Functions from MATLAB®

Troubleshooting Shared Library Applications

2-14

Module Not Found Error

Module Not Found Error
This error occurs when the shared library has dependencies which MATLAB
can not find.

On Windows systems, to find library dependencies, use the third-party
product Dependency Walker. Dependency Walker is a free utility that scans
any 32-bit or 64-bit Windows module and builds a hierarchical tree diagram
of all dependent modules. For each module found, it lists all the functions
that are exported by that module, and which of those functions are called by
other modules. Download the Dependency Walker utility from the following
Web site:

http://www.dependencywalker.com/

See the Technical Support solution 1-2RQL4L at
http://www.mathworks.com/support/solutions/data/1-2RQL4L.html for
information on using the Dependency Walker.

2-15

http://www.dependencywalker.com/

http://www.mathworks.com/support/solutions/data/1-2RQL4L.html

2 Calling C Shared Library Functions from MATLAB®

No Matching Signature Error
This error occurs when you call a function without the correct input
arguments, or if there is an error in the function signature in the header file.

For example, the function signature for the addStructByRef function in
shrlibsample is:

[double, c_structPtr] addStructByRef(c_structPtr)

Load the library.

addpath(fullfile(matlabroot,'extern','examples','shrlib'))
loadlibrary('shrlibsample')

Create a structure, and call addStructByRef.

struct.p1 = 4; struct.p2 = 7.3; struct.p3 = -290;

If you call the function without the input argument, MATLAB displays the
error message.

[res,st] = calllib('shrlibsample','addStructByRef');

Error using calllib
No method with matching signature.

The correct call is:

[res,st] = calllib('shrlibsample','addStructByRef',struct);

2-16

MATLAB® Crashes Making a Function Call to a Shared Library

MATLAB Crashes Making a Function Call to a Shared
Library

Some shared libraries, compiled as Microsoft Windows 32-bit libraries, use
a calling convention that is incompatible with the default MATLAB calling
convention. The default calling convention for MATLAB and for Microsoft C
and C++ compilers is cdecl. For more informations, see the MSDN® Calling
Conventions article.

If your library uses a different calling convention, you must
create a loadlibrary prototype file and modify it with the correct
settings, as described in the Technical Support solution 1-671ZZL at
http://www.mathworks.com/support/solutions/data/1-671ZZL.html.

For information about creating prototype files, see “MATLAB Prototype Files”
on page 2-57.

2-17

http://msdn.microsoft.com/en-us/library/k2b2ssfy.aspx
http://msdn.microsoft.com/en-us/library/k2b2ssfy.aspx
http://www.mathworks.com/support/solutions/data/1-671ZZL.html

2 Calling C Shared Library Functions from MATLAB®

Passing Arguments to Shared Library Functions

In this section...

“C and MATLAB Equivalent Types” on page 2-18

“Passing Arguments” on page 2-20

“Passing a NULL Pointer” on page 2-21

“Manually Converting Data Passed to Functions” on page 2-22

C and MATLAB Equivalent Types
The shared library interface supports all standard scalar C types. The
following table shows these C types with their equivalent MATLAB types.
MATLAB uses the type from the right column for arguments having the C
type shown in the left column.

Note All scalar values returned by MATLAB are of type double.

MATLAB Primitive Types

C Type Equivalent MATLAB Type

char, byte int8

unsigned char, byte uint8

short int16

unsigned short uint16

int int32

long (Windows) int32,
long

long (Linux) int64,
long

unsigned int uint32

2-18

Passing Arguments to Shared Library Functions

MATLAB Primitive Types (Continued)

C Type Equivalent MATLAB Type

unsigned long (Windows) uint32,
long

unsigned long (Linux) uint64,
long

float single

double double

char * 1xn char array

*char[] cell array of strings

The following table shows how MATLAB maps C pointers (column 1) to the
equivalent MATLAB function signature (column 2). In most cases, you can
pass a variable from the Equivalent MATLAB Type column to functions
with the corresponding Argument Data Type. See “Pointer Arguments in C
Functions” on page 2-39 for information about when you might choose to use a
libpointer object instead.

MATLAB Extended Types

C Pointer Type Argument Data Type
Equivalent MATLAB
Type

double * doublePtr double

float * singlePtr single

integer pointer types
(int *)

(u)int(size)Ptr (u)int(size)

Matrix of signed bytes int8Ptr int8

Null-terminated string
passed by value

cstring 1xn char array

Array of pointers to
strings (or one **char)

stringPtrPtr cell array of strings

enum enumPtr

2-19

2 Calling C Shared Library Functions from MATLAB®

MATLAB Extended Types (Continued)

C Pointer Type Argument Data Type
Equivalent MATLAB
Type

type ** Same as typePtr with
an added Ptr (for
example, double **
is doublePtrPtr)

libpointer object

void * voidPtr

void ** voidPtrPtr libpointer object

C-style structure structure MATLAB struct

mxArray * MATLAB array MATLAB array

mxArray ** MATLAB arrayPtr libpointer object

Passing Arguments
Here are some important things to note about the input and output arguments
shown in the Functions in library shrlibsample listing:

• Many arguments (like int32 and double) are similar to their C
counterparts. In these cases, you need only to pass in the MATLAB types
shown for these arguments.

• Some C arguments (for example, **double, or predefined structures), are
different from standard MATLAB types. In these cases, you can either
pass a standard MATLAB type and let MATLAB convert it for you, or
you convert the data yourself using the MATLAB functions libstruct
and libpointer. For more information, see “Manually Converting Data
Passed to Functions” on page 2-22.

• C functions often return data in input arguments passed by reference.
MATLAB creates additional output arguments to return these values. Note
that in the listing in the previous section, all input arguments ending in
Ptr or PtrPtr are also listed as outputs.

2-20

Passing Arguments to Shared Library Functions

Guidelines for Passing Arguments

• Nonscalar arguments must be declared as passed by reference in the
library functions.

• If the library function uses single subscript indexing to reference a
two-dimensional matrix, keep in mind that C programs process matrices
row by row while MATLAB processes matrices by column. To get C
behavior from the function, transpose the input matrix before calling the
function, and then transpose the function output.

• Use an empty array, [], to pass a NULL parameter to a library function
that supports optional input arguments. This is valid only when the
argument is declared as a Ptr or PtrPtr as shown by libfunctions or
libfunctionsview.

Passing a NULL Pointer
You can create a NULL pointer to pass to library functions in the following
ways:

• Pass an empty array [] as the argument.

• Use the libpointer function:

p = libpointer; % no arguments

p = libpointer('string') % string argument

p = libpointer('stringPtr') % pointer to a string argument

• Use the libstruct function:

p = libstruct('structtype'); % structure type

Creating an Empty libstruct Object
To create an empty libstruct object, call libstruct with only the
structtype argument. For example:

sci = libstruct('c_struct')
get(sci)

p1: 0

2-21

2 Calling C Shared Library Functions from MATLAB®

p2: 0
p3: 0

MATLAB displays the initialized values.

Manually Converting Data Passed to Functions
Under most conditions, MATLAB software automatically converts data
passed to and from external library functions to the type expected by the
external function. However, you may choose to convert your argument data
manually. Circumstances under which you might find this advantageous are:

• When you pass the same piece of data to a series of library functions, you
can convert it once manually before the call to the first function rather than
having MATLAB convert it automatically on every call. This reduces the
number of unnecessary copy and conversion operations.

• When you pass large structures, you can save memory by creating MATLAB
structures that match the shape of the C structures used in the external
function instead of using generic MATLAB structures. The libstruct
function creates a MATLAB structure modeled from a C structure taken
from the library. See “Working with Structure Arguments” on page 2-53
for more information.

• When an argument to an external function uses more than one level of
referencing (e.g., double **), you must pass a pointer created using the
libpointer function rather than relying on MATLAB to convert the type
automatically.

2-22

Shared Library shrlibsample.c

Shared Library shrlibsample.c
MATLAB software includes a sample external library called shrlibsample.c.
The library is in the folder matlabroot\extern\examples\shrlib. To see
the code, open the file in MATLAB Editor. The corresponding header file is
shrlibsample.h. To see the code, open this file.

To use the shrlibsample library, you first need to either add this folder to
your MATLAB path with the command:

addpath(fullfile(matlabroot,'extern','examples','shrlib'))

or make the folder your current working folder with the command:

cd(fullfile(matlabroot,'extern','examples','shrlib'))

The following code loads the library and displays the MATLAB syntax for
calling functions in the library:

loadlibrary('shrlibsample')

libfunctions shrlibsample -full

Functions in shrlibsample Library

Functions in library shrlibsample:

[double, doublePtr] addDoubleRef(double, doublePtr, double)
double addMixedTypes(int16, int32, double)
[double, c_structPtr] addStructByRef(c_structPtr)
double addStructFields(c_struct)
c_structPtrPtr allocateStruct(c_structPtrPtr)
voidPtr deallocateStruct(voidPtr)
lib.pointer exportedDoubleValue
lib.pointer getListOfStrings
doublePtr multDoubleArray(doublePtr, int32)
[lib.pointer, doublePtr] multDoubleRef(doublePtr)
int16Ptr multiplyShort(int16Ptr, int32)
doublePtr print2darray(doublePtr, int32)
printExportedDoubleValue
cstring readEnum(Enum1)

2-23

2 Calling C Shared Library Functions from MATLAB®

[cstring, cstring] stringToUpper(cstring)

2-24

Pass String Arguments

Pass String Arguments
For arguments that require char *, you can pass a MATLAB string (a
character array). For example, see the stringToUpper function in the
shrlibsample library.

stringToUpper C Function

EXPORTED_FUNCTION char* stringToUpper(char *input)
{

char *p = input;

if (p != NULL)
while (*p!=0)

*p++ = toupper(*p);
return input;

}

libfunctions shows that you can use a MATLAB cstring for this input.
Type:

libfunctions shrlibsample -full

stringToUpper Function Signature

Return Type Name Arguments

[cstring,
cstring]

stringToUpper (cstring)

Create a MATLAB character array, str, and pass it as the input argument:

str = 'This was a Mixed Case string';
calllib('shrlibsample','stringToUpper',str)

ans =
THIS WAS A MIXED CASE STRING

Although the input argument that MATLAB passes to stringToUpper
resembles a pointer to type char, it is not a true pointer data type because it
does not contain the address of the MATLAB character array, str. When the

2-25

2 Calling C Shared Library Functions from MATLAB®

function executes, it returns the correct result, but does not modify the value
in str. If you examine str, you find it is unchanged. Type:

str

str =
This was a Mixed Case string

2-26

Pass Structures

Pass Structures

In this section...

“Add Values of Fields in Structure” on page 2-27

“Preconvert MATLAB Structure Before Adding Values” on page 2-28

“Display Structure Field Names” on page 2-29

Add Values of Fields in Structure
This example sums the values of the fields in a MATLAB structure by calling
the addStructFields function. The function is in shrlibsample.c, described
in “Shared Library shrlibsample.c” on page 2-23.

Read the function signature.

addStructFields Function Signature

Return Type Name Arguments

double addStructFields (struct c_struct st)

The input argument is a structure of type c_struct.

Look at the definition in the shrlibsample.h header file for information
about how to create the structure.

c_struct Structure Definition

struct c_struct {
double p1;
short p2;
long p3;

};

Create and initialize structure sm:

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;

Each field is of type double.

2-27

2 Calling C Shared Library Functions from MATLAB®

Load the library.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot,'extern','examples','shrlib'));
loadlibrary('shrlibsample')

end

Call the function.

calllib('shrlibsample','addStructFields',sm)

ans =
1177

MATLAB automatically converts the fields of structure sm to the library
definition for c_struct.

Preconvert MATLAB Structure Before Adding Values
This example preconverts structure sm to c_struct before calling
addStructFields. For more information about when to preconvert, see
“Strategies for Passing Structures” on page 2-53.

Create and initialize structure sm:

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;

Convert the fields, which are of type double, to match the c_struct structure
type.

if (libisloaded('shrlibsample'))
sc = libstruct('c_struct',sm);

end

The fields of libstruct object sc are double, short, and long.

Call the function.

calllib('shrlibsample','addStructFields',sm)

ans =
1177

2-28

Pass Structures

Display Structure Field Names
This example displays the field names of the externally-defined structure
c_struct.

Create a libstruct object.

if (libisloaded('shrlibsample'))
s = libstruct('c_struct');

end

To get the names of the fields, type:

get(s)

p1: 0
p2: 0
p3: 0

MATLAB displays the field names p1, p2, and p3 and their values.

2-29

2 Calling C Shared Library Functions from MATLAB®

Pass Enumerated Types

In this section...

“Call readEnum Function with Enumeration String” on page 2-30

“Call Function with Integer Equivalent of Enumeration” on page 2-30

“Call Function with enum Pointer Type” on page 2-31

Call readEnum Function with Enumeration String
In MATLAB, you can express an enumerated type as either the enumeration
string or its equivalent numeric value. The readEnum function from the
shrlibsample library displays a string that matches the input argument.

Read the function signature.

readEnum Function Signature

Return Type Name Arguments

cstring readEnum (Enum1)

Look at the definition in the shrlibsample.h header file for information
about the values for the Enum1 input.

Enum1 enum Definition

typedef enum Enum1 {en1 = 1, en2, en4 = 4} TEnum1;

Call readEnum with a string:

calllib('shrlibsample','readEnum','en4')

ans =
You chose en4

Call Function with Integer Equivalent of Enumeration
The Enum1 definition declares enumeration en4 equal to 4. Call readEnum
with the numeric argument.

2-30

Pass Enumerated Types

calllib('shrlibsample','readEnum',4)

ans =
You chose en4

Call Function with enum Pointer Type
MATLAB maps C function enumeration pointer arguments to enumPtr, where
enum is the name of a C enumeration. The GetEnumType function uses the
Enum1 definition from shrlibsample.h to ...

Read the function signature.

GetEnumType Function Signature

Return Type Name Arguments

void GetEnumType (Enum1Ptr)

Create an Enum1Ptr.

enumValueIn = libpointer('Enum1Ptr',4);

Call the function.

[retVal enumValueOut] = calllib(...
'shrlibsample',
'GetEnumType',
enumValueIn);

Read the value.

get(enumValueIn)

2-31

2 Calling C Shared Library Functions from MATLAB®

Pass Pointers

Pass Primitive MATLAB Type
MATLAB automatically converts an argument passed by value into an
argument passed by reference when the external function prototype defines
the argument as a pointer. For example, a MATLAB double argument
passed to a function that expects double * is converted to a double pointer
by MATLAB.

addDoubleRef is a C function that takes an argument of type double *.

addDoubleRef C Function

EXPORTED_FUNCTION double addDoubleRef(double x, double *y, double z)
{

return (x + *y + z);
}

Call the function with three arguments of type double, and MATLAB handles
the conversion:

calllib('shrlibsample','addDoubleRef',1.78,5.42,13.3)

ans =
20.5000

2-32

Pass Arrays

Pass Arrays

In this section...

“Two Dimensional MATLAB Arrays” on page 2-33

“More than Two Dimensional MATLAB Arrays” on page 2-34

Two Dimensional MATLAB Arrays
All MATLAB data is stored columnwise, and MATLAB uses one-based
indexing for subscripts. MATLAB uses these conventions because it was
originally written in Fortran. To demonstrate how this may affect your
MATLAB data when using C functions, create the following matrix:

m=1:12;
m=reshape(m,4,3)
dims = size(m)

m =
1 5 9
2 6 10
3 7 11
4 8 12

dims =
4 3

Matrix m is a 4-by-3 array.

You might need to transpose MATLAB arrays before passing them to a
C function since C assumes a row by column format. The print2darray
function in the shrlibsample library shows this.

print2darray C Function

EXPORTED_FUNCTION void print2darray(double my2d[][3],int len)
{

int indxi,indxj;
for(indxi=0;indxi<len;++indxi)
{

2-33

2 Calling C Shared Library Functions from MATLAB®

for(indxj=0;indxj<3;++indxj)
{

mexPrintf("%10g",my2d[indxi][indxj]);
}
mexPrintf("\n");

}
}

The first argument is a two dimensional array. The len argument is the
number of rows. The function displays each element of the matrix. Using
matrix m:

calllib('shrlibsample','print2darray',m,4)

1 2 3
4 5 6
7 8 9

10 11 12

You must transpose m to get the desired result:

calllib('shrlibsample','print2darray',m',4)

1 5 9
2 6 10
3 7 11
4 8 12

More than Two Dimensional MATLAB Arrays
When passing an array having more than two dimensions, the shape of the
array might be altered by MATLAB. To ensure that the array retains its
shape, store the size of the array before making the call, and then use this
same size to reshape the output array to the correct dimensions. For example:

vs = size(vin) % Store the original dimensions
vs =

2 5 2

vout = calllib('shrlibsample','multDoubleArray',vin,20);

size(vout) % Dimensions have been altered

2-34

Pass Arrays

ans =
2 10

vout = reshape(vout,vs); % Restore the array to 2-by-5-by-2

size(vout)
ans =

2 5 2

2-35

2 Calling C Shared Library Functions from MATLAB®

Iterate Through an Array

In this section...

“Create Cell Array from libpointer” on page 2-36

“Perform Pointer Arithmetic on Structure Array” on page 2-37

Create Cell Array from libpointer
This example creates a MATLAB cell array of strings, mlStringArray, from
the output of the getListOfStrings function.

The getListOfStrings function creates an array of strings and returns a
pointer to the array.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot,'extern','examples','shrlib'));
loadlibrary('shrlibsample')

end

Call the function.

ptr = calllib('shrlibsample','getListOfStrings')

ptr =

libpointer

Create indexing variables to iterate through the arrays. Use ptrindex for the
strings returned by the function and index for the MATLAB array:

ptrindex = ptr;
index = 1;

Create the cell array of strings, mlStringArray:

while ischar(ptrindex.value{1}) %stop at end of list (NULL)
mlStringArray{index} = ptrindex.value{1};
ptrindex = ptrindex + 1; %increment pointer
index = index + 1; %increment array index

end

2-36

Iterate Through an Array

To view the contents of the cell array, type:

mlStringArray

mlStringArray =
'String 1' 'String Two' '' 'Last string'

Perform Pointer Arithmetic on Structure Array
This example creates a MATLAB structure, based on the c_struct definition
in the shrlibsample.h header file. It uses pointer arithmetic to access
elements of the structure.

Load the definition.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot,'extern','examples','shrlib'));
loadlibrary('shrlibsample')

end

Create the MATLAB structure.

s = struct('p1',{1,2,3},'p2',{1.1,2.2,3.3},'p3',{0});

Create a pointer to the structure.

sptr = libpointer('c_struct',s);

Read the values of the first element.

v1 = sptr.Value;

To read the values of the next element, increment the pointer.

sptr = sptr + 1;

2-37

2 Calling C Shared Library Functions from MATLAB®

v2 = sptr.Value;

2-38

Working with Pointer Arguments

Working with Pointer Arguments

In this section...

“Pointer Arguments in C Functions” on page 2-39

“The libpointer Object” on page 2-39

“Creating a Pointer to a Primitive Type” on page 2-41

“Creating a Pointer to a Structure” on page 2-44

“Passing a Pointer to the First Element of an Array” on page 2-46

“Putting a String into a Void Pointer” on page 2-47

“Passing an Array of Strings” on page 2-47

“Memory Allocation for an External Library” on page 2-49

“Multilevel Pointers” on page 2-50

Pointer Arguments in C Functions
Many functions in external libraries pass arguments by reference. When you
pass by reference, you pass a pointer to the value. In the function signature,
these are the arguments with names ending in Ptr and PtrPtr. Although
MATLAB does not support passing by reference, you can create a MATLAB
argument, called a libpointer object, that is compatible with a C pointer.

In many cases, you can simply pass a MATLAB variable (passing an argument
by value), even when the signature for that function declares the argument to
be a pointer. There are times, however, when it is useful to pass a libpointer.

• You want to modify the data in the input arguments.

• You are passing large amounts of data, and you don’t want to make copies
of the data.

• The library stores and uses the pointer for a period of time so you want the
MATLAB function to control the lifetime of the libpointer object.

The libpointer Object
A libpointer is an instance of a MATLAB lib.pointer class.

2-39

2 Calling C Shared Library Functions from MATLAB®

Properties of lib.pointer Class

• Value

• DataType — see the libpointer function.

Methods of lib.pointer Class

• disp

• isNull

• plus. For an example, see “Creating a Pointer by Offsetting from an
Existing libpointer” on page 2-43.

• reshape. For an example, see “Guidelines for Passing Arguments” on page
2-21.

• setdatatype. For more information, see “Reading a libpointer Object” on
page 2-40 and the example in “Reading Function Return Values” on page
2-42.

Constructing a libpointer Object
To construct a pointer, use the libpointer function. For example, you want
to create a pointer, pv, to a value of type int16. In this case, the type of the
pointer is the data type (int16) suffixed by the letters Ptr:

pv = libpointer('int16Ptr',485);

To display the properties of the variable pv, type:

get(pv)

Value: 485
DataType: 'int16Ptr'

Reading a libpointer Object
When a library function returns a libpointer object, you must initialize its
type and size using the setdatatype method. The function signature for
setdatatype is:

2-40

Working with Pointer Arguments

Name Arguments

setdatatype (handle,
string,
double)

where handle is the object’s handle, string is the type, and double is the
size. For an example, see “Reading Function Return Values” on page 2-42.

Creating a Pointer to a Primitive Type
The following example illustrates how to construct and pass a pointer, and
how to interpret the output. It uses the multDoubleRef function in the
shrlibsample library, which multiplies the input by 5. The input is a pointer
to a double, and it returns a pointer to a double.

multDoubleRef C Function

EXPORTED_FUNCTION double *multDoubleRef(double *x)
{

*x *= 5;
return x;

}

Construct a libpointer object, xp, to point to the input data, x.

x = 15;
xp = libpointer('doublePtr',x);

Verify the contents of xp:

get(xp)

Value: 15
DataType: 'doublePtr'

Now call the function and check the results:

calllib('shrlibsample','multDoubleRef',xp);
xp.Value

2-41

2 Calling C Shared Library Functions from MATLAB®

ans =
75

The object xp is a handle object. All copies of this handle refer to the same
underlying object and any operations you perform on a handle object affect all
copies of that object. However, object xp is not a C language pointer. Although
it points to x, it does not contain the address of x. The function modifies the
Value property of xp but does not modify the value in the underlying object x.
The original value of x is unchanged. Type:

x

x =
15

Reading Function Return Values
In the previous example, the result of the function called from MATLAB could
be obtained by examining the modified input pointer. But this function also
returns data in its output arguments that may be useful.

To see the MATLAB signature for multDoubleRef, type:

libfunctions shrlibsample -full

multDoubleRef Function Signature

Return Type Name Arguments

[lib.pointer,
doublePtr]

multDoubleRef (doublePtr)

The function returns two outputs—a libpointer object and the Value
property of the input argument:

Run the example again:

x = 15;
xp = libpointer('doublePtr',x);

Check the output values:

2-42

Working with Pointer Arguments

[xobj,xval] = calllib('shrlibsample','multDoubleRef',xp)

xobj =
lib.pointer

xval =
75

Like the input argument xp, xobj is also a libpointer object. You can
examine this output, but first you need to initialize its type and size because
the function does not define these properties. Use the setdatatype function
defined by class lib.pointer to set the data type to doublePtr and the size
to 1-by-1. Once initialized, you can examine outputs by typing:

setdatatype(xobj,'doublePtr',1,1)
get(xobj)

ans =
Value: 75

DataType: 'doublePtr'

The second output of multDoubleRef, xval, is a copy of the Value property
of input xp.

Creating a Pointer by Offsetting from an Existing libpointer
You can use the plus operator (+) to create a new pointer that is offset from
an existing pointer by a scalar numeric value. For example, suppose you
create a libpointer to the vector x:

x = 1:10;
xp = libpointer('doublePtr',x);
xp.Value

ans =
1 2 3 4 5 6 7 8 9 10

2-43

2 Calling C Shared Library Functions from MATLAB®

Use the plus operator to create a new libpointer that is offset from xp:

xp2 = xp+4;
xp2.Value

ans =
5 6 7 8 9 10

Note The new pointer (xp2 in this example) is valid only as long as the
original pointer, xp, exists.

Creating a Pointer to a Structure
If a function has an input argument that is a pointer to a structure, you can
either pass the structure itself, or pass a pointer to the structure. Creating a
pointer to a structure is similar to creating a pointer to a primitive type.

The addStructByRef function in the shrlibsample library takes a pointer to
a structure of type c_struct. The output argument is the sum of all fields in
the structure. The function also modifies the fields of the input structure.

addStructByRef C Function

EXPORTED_FUNCTION double addStructByRef(struct c_struct *st) {
double t = st->p1 + st->p2 + st->p3;
st->p1 = 5.5;
st->p2 = 1234;
st->p3 = 12345678;
return t;

}

Passing the Structure Itself
Although the input to the addStructByRef function is a pointer to a structure,
you can pass the structure itself and let MATLAB make the conversion to a
pointer.

In the following example, create the structure sm and call addStructByRef:

2-44

Working with Pointer Arguments

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;
x = calllib('shrlibsample','addStructByRef',sm)

x =
1177

However, MATLAB does not modify the contents of sm, since it is not a
pointer. Type:

sm

sm =
p1: 476
p2: -299
p3: 1000

Passing a Structure Pointer
The following example passes a pointer to the structure. First, create the
libpointer object:

sp = libpointer('c_struct',sm);
sp.Value

ans =
p1: 476
p2: -299
p3: 1000

The libpointer, sp, has the same values as the structure sm.

Pass the libpointer to the function:

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot,'extern','examples','shrlib'));
loadlibrary('shrlibsample')

end
calllib('shrlibsample','addStructByRef',sp)

ans =
1177

2-45

2 Calling C Shared Library Functions from MATLAB®

In this case, the function modifies the structure fields. Type:

sp.Value

ans =
p1: 5.5000
p2: 1234
p3: 12345678

MATLAB displays the updated values.

Passing a Pointer to the First Element of an Array
In cases where a function defines an input argument that is a pointer to the
first element of a data array, MATLAB automatically passes an argument
that is a pointer of the correct type to the first element of data in the MATLAB
vector or matrix.

The following pseudo-code shows how to do this. Suppose you have a
function mySum in a library myLib. The signature of the C function is:

Return Type Name Arguments

int mySum (int size,
short* data)

The C variable data is an array of type short. The equivalent MATLAB type is
int16. You can pass any of the following MATLAB variables to this function:

Data = 1:100;
shortData = int16(Data); %equivalent to C short type
lp = libpointer('int16Ptr',Data); %libpointer object

The following pseudo-code statements are equivalent:

summed_data = calllib('myLib','mySum',100,Data);
summed_data = calllib('myLib','mySum',100,shortData);
summed_data = calllib('myLib','mySum',100,lp);

The length of the data vector must be equal to the specified size. For example:

2-46

Working with Pointer Arguments

% sum last 50 elements
summed_data = calllib('myLib','mySum',50,Data(51:100));

Putting a String into a Void Pointer
C represents characters as eight-bit integers. To use a MATLAB string as an
input argument, you must convert the string to the proper type and create a
voidPtr. To do this, use the libpointer function as follows:

str = 'string variable';
vp = libpointer('voidPtr',[int8(str) 0]);

The syntax [int8(str) 0] creates the null-terminated string required by the
C function. To read the string, and verify the pointer type, enter:

char(vp.Value)
vp.DataType

ans =
string variable
ans =
voidPtr

You can call a function that takes a voidPtr to a string as an input argument
using the following syntax because MATLAB automatically converts an
argument passed by value into an argument passed by reference when the
external function prototype defines the argument as a pointer:

func_name([int8(str) 0])

Note that while MATLAB converts the argument from a value to a pointer, it
must be of the correct type.

Passing an Array of Strings
The getListOfStrings function from the shrlibsample library returns a
char **, which you can think of as a pointer to an array of strings.

getListOfStrings Function Signature

Return Type Name

lib.pointer getListOfStrings

2-47

2 Calling C Shared Library Functions from MATLAB®

getListOfStrings C Function

EXPORTED_FUNCTION const char ** getListOfStrings(void)
{

static const char *strings[5];
strings[0]="String 1";
strings[1]="String Two";
strings[2]=""; /* empty string */
strings[3]="Last string";
strings[4]=NULL;
return strings;

}

To read this array, type:

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot,'extern','examples','shrlib'));
loadlibrary('shrlibsample')

end
ptr = calllib('shrlibsample','getListOfStrings');

MATLAB creates a libpointer object ptr of type stringPtrPtr. This object
points to the first string. To display the string, use the Value property:

ptr.Value

To view the other strings, you need to increment the pointer. For example,
type:

for index = 0:3
tempPtr = ptr + index;
tempPtr.Value

end

ans =
'String 1'

ans =
'String Two'

ans =
{''}

ans =

2-48

Working with Pointer Arguments

'Last string'

For another example, see “Iterate Through an Array” on page 2-36.

Memory Allocation for an External Library
In general, MATLAB passes a valid memory address each time you pass a
variable to a library function. You should use a libpointer object in cases
where the library stores the pointer and accesses the buffer over a period of
time. In these cases, you need to ensure that MATLAB has control over the
lifetime of the buffer and to prevent copies of the data from being made. The
following pseudo-code is an example of asynchronous data acquisition that
shows how to use a libpointer in this situation.

Suppose an external library myLib has the following functions:

AcquireData(int points,short *buffer)
IsAquisitionDone(void)

where buffer is declared as follows:

short buffer[99]

First, create a libpointer to an array of 99 points:

BufferSize = 99;
pBuffer = libpointer('int16Ptr',zeros(BufferSize,1));

Then, begin acquiring data and wait in a loop until it is done:

calllib('myLib','AcquireData,BufferSize,pbuffer);
while (~calllib('myLib','IsAcquisitionDone')

pause(0.1)
end

The following statement reads the data in the buffer:

result = pBuffer.Value;

When the library is done with the buffer, clear the MATLAB variable:

clear pBuffer

2-49

2 Calling C Shared Library Functions from MATLAB®

Multilevel Pointers
Multilevel pointers are arguments that have more than one level of
referencing. A multilevel pointer type in MATLAB uses the suffix PtrPtr.
For example, use doublePtrPtr for the C argument double **.

When calling a function that takes a multilevel pointer argument, use a
libpointer object and let MATLAB convert it to the multilevel pointer. For
example, the allocateStruct function in the shrlibsample library takes a
c_structPtrPtr argument.

allocateStruct Function Signature

Return Type Name Arguments

c_structPtrPtr allocateStruct (c_structPtrPtr)

allocateStruct C Function

EXPORTED_FUNCTION void allocateStruct(struct c_struct **val)
{

val=(struct c_struct) malloc(sizeof(struct c_struct));
(*val)->p1 = 12.4;
(*val)->p2 = 222;
(*val)->p3 = 333333;

}

Create a libpointer object of type c_structPtr and pass it to the function:

2-50

Working with Pointer Arguments

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot,'extern','examples','shrlib'));
loadlibrary('shrlibsample')

end
sp = libpointer('c_structPtr');
calllib('shrlibsample','allocateStruct',sp)
get(sp)

ans =
Value: [1x1 struct]

DataType: 'c_structPtr'

Type:

sp.Value

ans =
p1: 12.4000
p2: 222
p3: 333333

When you use allocateStruct, you must free memory using the command:

calllib('shrlibsample','deallocateStruct',sp)

Returning an Array of Strings
Suppose you have a library, myLib, with a function, acquireString, that
reads an array of strings. The function signature is:

Return Type Name Arguments

char** acquireString (void)

char** acquireString(void)

The following pseudo-code shows how to manipulate the return value, an
array of pointers to strings.

ptr = calllib(myLib,'acquireString');

2-51

2 Calling C Shared Library Functions from MATLAB®

MATLAB creates a libpointer object ptr of type stringPtrPtr. This object
points to the first string. To view other strings, you need to increment the
pointer. For example, to display the first 3 strings, type:

for index = 0:2
tempPtr = ptr + index;
tempPtr.Value

end

ans =
'str1'

ans =
'str2'

ans =
'str3'

2-52

Working with Structure Arguments

Working with Structure Arguments

In this section...

“Structure Argument Requirements” on page 2-53

“Finding Structure Field Names” on page 2-53

“Strategies for Passing Structures” on page 2-53

Structure Argument Requirements
When you pass a MATLAB structure to an external library function:

• Every MATLAB field name must match a field name in the library
structure definition. Field names are case sensitive.

• MATLAB structures cannot contain fields that are not in the library
structure definition.

• If a MATLAB structure contains fewer fields than defined in the library
structure, MATLAB sets undefined fields to zero.

You do not need to match the data types of numeric fields. The calllib
function converts to the correct numeric type.

Finding Structure Field Names
To determine the name and data type of structure fields, you can:

• Consult the library documentation.

• Look at the structure definition in the library header file.

• Use the libstruct function. For an example, see “Display Structure Field
Names” on page 2-29.

Strategies for Passing Structures
MATLAB automatically converts a structure to the library definition for that
structure type. For most cases, such as working with small structures, this
works fine. For an example, see “Add Values of Fields in Structure” on page
2-27.

2-53

2 Calling C Shared Library Functions from MATLAB®

However, when working with repeated calls that pass one or more large
structures, it might be to your advantage to convert the structure manually
before making any calls to external functions. In this way, you save processing
time by converting the structure data only once at the start rather than at
each function call. You can also save memory if the fields of the converted
structure take up less space than the original MATLAB structure.

To manually convert, call the libstruct function to create a libstruct object.
Although it is an object, it behaves like a MATLAB structure. The fields of the
object are derived from an externally-specified structure type. For an example,
see “Preconvert MATLAB Structure Before Adding Values” on page 2-28.

2-54

Work with libstruct Objects

Work with libstruct Objects
This example shows the properties and methods of a libstruct object.

Create libstruct Object

Create libstruct object sc.

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;
sc = libstruct('c_struct',sm);

Class of libstruct Object

A libstruct object an instance of a MATLAB class called lib.c_struct.

whos

Name Size Bytes Class

sc 1x1 lib.c_struct
sm 1x1 396 struct array

Size of libstruct Object

Use the lib.c_struct class method structsize to obtain the size of a
libstruct object.

sc.structsize

ans =
16

Accessing Fields of libstruct Object

The fields are properties of the lib.c_struct class. You can read and modify
a field using the MATLAB set and get functions:

sc = libstruct('c_struct');
set(sc,'p1',100,'p2',150,'p3',200);
get(sc)

2-55

2 Calling C Shared Library Functions from MATLAB®

p1: 100
p2: 150
p3: 200

You can also read and modify the fields by treating them like MATLAB
structure fields:

sc.p1 = 23;
sc.p1

ans =
23

2-56

MATLAB® Prototype Files

MATLAB Prototype Files

In this section...

“How to Create a Prototype File” on page 2-58

“How to Specify a Thunk file” on page 2-58

“Deploy Applications That Use loadlibrary” on page 2-58

“Use loadlibrary in a Parallel Computing Environment” on page 2-58

“Change Function Signature” on page 2-58

“Rename Library Function” on page 2-58

“Load Subset of Functions in Library” on page 2-59

“Call Function with Variable Number of Arguments” on page 2-59

MATLAB provides a way to modify header file information by creating a
prototype file, a file of MATLAB commands.

Like a header file, the prototype file contains the function signatures for the
library. Here are some reasons for using a prototype file.

• To deploy applications that use loadlibrary (using MATLAB Compiler™).

• To use loadlibrary in a parallel computing environment (using Parallel
Computing Toolbox™).

• To make changes to signatures of the library functions.

• To rename some of the library functions.

• To use only a small percentage of the functions in the library you are
loading.

• To use functions with a variable number of arguments.

You can make changes to the prototypes by editing the prototype file and
reloading the library.

2-57

2 Calling C Shared Library Functions from MATLAB®

How to Create a Prototype File
To create a prototype file, use the mfilename option of the loadlibrary
function.

How to Specify a Thunk file
For information about default thunk file names, see loadlibrary. To change
the name, use the thunkfilename option.

Deploy Applications That Use loadlibrary
To deploy a MATLAB application that uses loadlibrary, using MATLAB
Compiler:

• Create a prototype file.

• For 64-bit applications, specify a thunk file.

• Include all the relevant files when creating the project with mcc.

Use loadlibrary in a Parallel Computing Environment
To use loadlibrary in a parallel computing environment (using Parallel
Computing Toolbox):

• Create a prototype file.

• For 64-bit applications, specify a thunk file.

• Make sure all relevant files are accessible to all workers.

Change Function Signature
Edit the prototype file, changing the fcns.LHS or fcns.RHS field for that
function. This changes the types of arguments on the left hand side or right
hand side, respectively.

Rename Library Function
Edit the prototype file, defining the fcns.alias field for that function.

2-58

MATLAB® Prototype Files

Load Subset of Functions in Library
Edit the prototype file, commenting out the unused functions. This reduces
the amount of memory required for the library.

Call Function with Variable Number of Arguments
Create an alias function in a prototype file for each set of arguments you
use to call the function.

2-59

2 Calling C Shared Library Functions from MATLAB®

Create Alias Function Name Using Prototype File
This example shows how to create and modify a prototype file to create an
alias for the function, mxGetNumberOfDimensions.

Use a folder for which you have write-access.

cd('c:\work')

Create prototype file, mxproto.

hfile = fullfile(matlabroot,'extern','include','matrix.h');
loadlibrary('libmx',hfile,'mfilename','mxproto')

MATLAB creates the file, mxproto.m, in the current folder.

Open the file in MATLAB Editor.

edit mxproto.m

Search for the function mxGetNumberOfDimensions.

The following command assigns the alias mxGetDims.

fcns.alias{fcnNum}='mxGetDims';

Add the command to the line before the command to increment fcnNum. The
new function prototype, with the new command shown in bold, looks like this:

fcns.name{fcnNum}='mxGetNumberOfDimensions';
fcns.calltype{fcnNum}='cdecl';
fcns.LHS{fcnNum}='int32';
fcns.RHS{fcnNum}={'MATLAB array'};
fcns.alias{fcnNum}='mxGetDims'; % Alias defined
fcnNum=fcnNum+1; % Increment fcnNum

2-60

Create Alias Function Name Using Prototype File

Reload libmx using the prototype file.

unloadlibrary libmx
loadlibrary('libmx', @mxproto)

Call the function.

y = rand(4,7,2);
calllib('libmx','mxGetDims',y)

ans =
3

Clean up.

2-61

2 Calling C Shared Library Functions from MATLAB®

2-62

3

Intro to MEX-Files

• “Introducing MEX-Files” on page 3-2

• “MEX-Files Call C/C++ and Fortran Programs” on page 3-5

• “MATLAB Data” on page 3-18

• “Build MEX-Files” on page 3-27

• “Table of MEX-File Source Code Files” on page 3-38

• “Custom Building MEX-Files” on page 3-43

• “Call LAPACK and BLAS Functions” on page 3-59

• “Running MEX-Files with .DLL File Extensions on Windows 32-bit
Platforms” on page 3-70

• “Upgrade MEX-Files to Use 64-Bit API” on page 3-71

• “Platform Compatibility” on page 3-84

• “Invalid MEX-File Error” on page 3-85

• “Before You Run a MEX-File You Receive from Someone Else” on page 3-86

• “Version Compatibility” on page 3-87

• “Troubleshooting MEX-Files” on page 3-88

• “Configuration Issues” on page 3-89

• “Understanding MEX-File Problems” on page 3-91

• “Compiler- and Platform-Specific Issues” on page 3-96

• “Memory Management Issues” on page 3-97

• “Compiler Errors in Fortran MEX-Files” on page 3-103

3 Intro to MEX-Files

Introducing MEX-Files

In this section...

“What Are MEX-Files?” on page 3-2

“Definition of MEX” on page 3-3

“MEX and MX Matrix Libraries” on page 3-3

“Introduction to Source MEX-Files” on page 3-3

“Overview of Creating a Binary MEX-File” on page 3-4

“Configuring Your Environment” on page 3-4

What Are MEX-Files?
You can call your own C, C++, or Fortran subroutines from the MATLAB
command line as if they were built-in functions. These programs, called
binary MEX-files, are dynamically-linked subroutines that the MATLAB
interpreter loads and executes. MEX stands for “MATLAB executable.”

Note MATLAB supports MEX-files created in C++, with some limitations.
For more information, see “Creating C++ MEX-Files” on page 4-9.

MEX-files have several applications:

• Calling large pre-existing C/C++ and Fortran programs from MATLAB
without rewriting them as MATLAB functions

• Replacing performance-critical routines with C/C++ implementations

MATLAB also provides an interface to shared libraries, described in “Calling
Functions in Shared Libraries” on page 2-3. You can use the loadlibrary
and calllib commands to call functions in such libraries.

MEX-files are not appropriate for all applications. MATLAB is
a high-productivity environment whose specialty is eliminating
time-consuming, low-level programming in compiled languages like C, C++, or

3-2

Introducing MEX-Files

Fortran. In general, do your programming in MATLAB. Do not use MEX-files
unless your application requires it.

Definition of MEX
The term mex has different meanings, as shown in the following table:

MEX Term Definition

source MEX-file C, C++, or Fortran source code file.

binary MEX-file Dynamically-linked subroutine executed in the
MATLAB environment.

MEX function
library

MATLAB C/C++ and Fortran API Reference library to
perform operations in the MATLAB environment.

mex build script MATLAB function to create a binary file from a source
file.

MEX and MX Matrix Libraries

• MX Matrix Library — Functions for use in programs to pass mxArray, the
type MATLAB uses to store arrays, to and from MEX-files. For a list of
these functions, see MX Matrix Library. For information about mxArray,
see “MATLAB Data” on page 3-18. For examples using these functions, see
matlabroot/extern/examples/mx.

• MEX Library — Functions to perform operations in the MATLAB
environment. For a list of these functions, see “C MEX Library” in
“Build C/C++ MEX-Files”. For examples using these functions, see
matlabroot/extern/examples/mex.

Introduction to Source MEX-Files
This section provides general information about source MEX-files and how to
get started. For a C language example, see “Creating a Source MEX-File” on
page 3-5. For information about using specific MATLAB C/C++ and Fortran
API Reference library functions, see “Workflow of a MEX-File” on page 3-10.

You can create MEX-files in C, C++, or Fortran. For clarity, this topic is in
the context of a C language program. For language-specific instructions,

3-3

3 Intro to MEX-Files

see “C/C++ Source MEX-Files” on page 4-2 and “Fortran Source MEX-Files”
on page 5-2.

To create source MEX-files you need the tools and knowledge to modify
and build source code. In particular, you need a compiler supported by
MATLAB. For an up-to-date list of supported compilers, see the Supported
and Compatible Compilers Web page.

A computational routine is the source code that performs functionality you
want to use with MATLAB. For example, if you created a standalone C
program for this functionality, it would have a main() function. MATLAB
communicates with your MEX-file using a gateway routine. The MATLAB
function that creates the gateway routine is mexfunction. You use
mexfunction instead of main() in your source file.

Overview of Creating a Binary MEX-File
To create a binary MEX-file:

• Assemble your functions and the MATLAB API functions into one or more
C/C++ source files.

• Write a gateway function in one of your C/C++ source files.

• Use the MATLAB mex function, called a build script, to build a binary
MEX-file.

• Use your binary MEX-file like any MATLAB function.

Configuring Your Environment
Before you start building binary MEX-files, select your default compiler and
test an existing source MEX-file. For more information about compilers,
and for step-by-step instructions for compiling sample programs, see “Build
MEX-Files” on page 3-27.

3-4

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

MEX-Files Call C/C++ and Fortran Programs

MEX-Files Call C/C++ and Fortran Programs

In this section...

“Creating a Source MEX-File” on page 3-5

“Workflow of a MEX-File” on page 3-10

“Using Binary MEX-Files” on page 3-16

“Binary MEX-File Placement” on page 3-17

“Using Help Files with MEX-Files” on page 3-17

“Workspace for MEX-File Functions” on page 3-17

Creating a Source MEX-File
Suppose you have some C code, called arrayProduct, that multiplies an
n-dimensional array y by a scalar value x and returns the results in array z.
It might look something like the following:

void arrayProduct(double x, double *y, double *z, int n)
{

int i;

for (i=0; i<n; i++) {
z[i] = x * y[i];

}
}

If x = 5 and y is an array with values 1.5, 2, and 9, then calling:

arrayProduct(x,y,z,n)

creates an array z with the values 7.5, 10, and 45.

The following steps show how to call this function in MATLAB, using a
MATLAB matrix, by creating the MEX-file arrayProduct.

1 “Create Your MEX Source File” on page 3-6

2 “Create a Gateway Routine” on page 3-6

3-5

3 Intro to MEX-Files

3 “Use Preprocessor Macros” on page 3-7

4 “Verify Input and Output Parameters” on page 3-7

5 “Read Input Data” on page 3-8

6 “Prepare Output Data” on page 3-9

7 “Perform Calculation” on page 3-9

8 “Build the Binary MEX-File” on page 3-9

9 “Test the MEX-File” on page 3-9

Create Your MEX Source File
Open MATLAB Editor and copy your code into a new file. Save the file on
your MATLAB path, for example, in c:\work, and name it arrayProduct.c.
This file is your computational routine, and the name of your MEX-file is
arrayProduct.

Copy and paste the code in the following examples to create the final
MEX-file. Alternatively, use the example arrayProduct.c, located in
matlabroot/extern/examples/mex. To see the contents of arrayProduct.c,
open the file in the MATLAB Editor.

Create a Gateway Routine
At the beginning of the file, add the C/C++ header file:

#include "mex.h"

Add comments:

/*
* arrayProduct.c
* Multiplies an input scalar times a 1xN matrix
* and outputs a 1xN matrix
*
* This is a MEX-file for MATLAB.

*/

3-6

MEX-Files Call C/C++ and Fortran Programs

After the computational routine, add the gateway routine mexFunction:

/* The gateway function */
void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])
{
/* variable declarations here */

/* code here */
}

Use Preprocessor Macros
The MX Matrix Library and MEX Library functions use MATLAB
preprocessor macros for cross-platform flexibility.

Edit your computational routine to use mwSize for mxArray size n and index i.

void arrayProduct(double x, double *y, double *z, mwSize n)
{

mwSize i;

for (i=0; i<n; i++) {
z[i] = x * y[i];

}
}

Verify Input and Output Parameters
In this example, there are two input arguments (a matrix and a scalar) and
one output argument (the product). To check that the number of input
arguments nrhs is two and the number of output arguments nlhs is one, put
the following code inside the mexFunction routine:

/* check for proper number of arguments */
if(nrhs!=2) {

mexErrMsgIdAndTxt("MyToolbox:arrayProduct:nrhs",
"Two inputs required.");

}

3-7

3 Intro to MEX-Files

if(nlhs!=1) {
mexErrMsgIdAndTxt("MyToolbox:arrayProduct:nlhs",

"One output required.");
}

The following code validates the input values:

/* make sure the first input argument is scalar */
if(!mxIsDouble(prhs[0]) ||

mxIsComplex(prhs[0]) ||
mxGetNumberOfElements(prhs[0])!=1) {

mexErrMsgIdAndTxt("MyToolbox:arrayProduct:notScalar",
"Input multiplier must be a scalar.");

}

The second input argument must be a row vector.

/* check that number of rows in second input argument is 1 */
if(mxGetM(prhs[1])!=1) {

mexErrMsgIdAndTxt("MyToolbox:arrayProduct:notRowVector",
"Input must be a row vector.");

}

Read Input Data
Put the following declaration statements at the beginning of your
mexFunction:

double multiplier; /* input scalar */
double *inMatrix; /* 1xN input matrix */
mwSize ncols; /* size of matrix */

Add these statements to the code section of mexFunction:

/* get the value of the scalar input */
multiplier = mxGetScalar(prhs[0]);

/* create a pointer to the real data in the input matrix */
inMatrix = mxGetPr(prhs[1]);

3-8

MEX-Files Call C/C++ and Fortran Programs

/* get dimensions of the input matrix */
ncols = mxGetN(prhs[1]);

Prepare Output Data
Put the following declaration statement after your input variable declarations:

double *outMatrix; /* output matrix */

Add these statements to the code section of mexFunction:

/* create the output matrix */
plhs[0] = mxCreateDoubleMatrix(1,ncols,mxREAL);

/* get a pointer to the real data in the output matrix */
outMatrix = mxGetPr(plhs[0]);

Perform Calculation
The following statement executes your function:

/* call the computational routine */
arrayProduct(multiplier,inMatrix,outMatrix,ncols);

Build the Binary MEX-File
Your source file should look something like arrayProduct.c, located in
matlabroot/extern/examples/mex. To see the contents of arrayProduct.c,
open the file in the MATLAB Editor.

To build the binary MEX-file, at the MATLAB command prompt, type:

mex arrayProduct.c

Test the MEX-File
Since the input arguments to arrayProduct are of type double, you can call
the function with default MATLAB variables. Type:

s = 5;
A = [1.5, 2, 9];
B = arrayProduct(s,A)

3-9

3 Intro to MEX-Files

B =
7.5000 10.0000 45.0000

It is good practice to validate the type of a MATLAB variable before calling
a MEX-file. To do this, check for the specific class of the variable, using the
strcmp function with the class function. The following code tests input
variable inputArg and, if necessary, converts it to double:

if strcmp(class(inputArg),'double')
% OK to call function

else
% Convert variable to correct type
inputArg = double(inputArg);

end

For example:

inputArg = int16(A);
if ~strcmp(class(inputArg),'double')

inputArg = double(inputArg);
end
B = arrayProduct(s,inputArg)

B =
10 10 45

To test error conditions, type:

arrayProduct

Error using arrayProduct
Two inputs required.

Workflow of a MEX-File
This section discusses MATLAB API functions for handling the basic
workflow of a MEX-file and uses C language code snippets for illustration.
For an example of a complete C program, see “Creating a Source MEX-File”
on page 3-5. Unless otherwise specified, in this section the term ”MEX-file”
refers to a source file.

3-10

MEX-Files Call C/C++ and Fortran Programs

Some basic programming tasks are:

• “Creating a Gateway Function” on page 3-11

• “Declaring Data Structures” on page 3-11

• “Managing Input and Output Parameters” on page 3-12

• “Validating Inputs” on page 3-12

• “Allocating and Freeing Memory” on page 3-13

• “Manipulating Data” on page 3-14

• “Displaying Messages to the User” on page 3-14

• “Handling Errors” on page 3-15

• “Cleaning Up and Exiting” on page 3-15

Creating a Gateway Function
Use the mexfunction function in your C source file as the interface between
your code and MATLAB. Place this function after your computational routine
and any other functions in your source.

The signature for mexfunction is:

void
mexFunction(int nlhs, mxArray *plhs[], ...

int nrhs, const mxArray *prhs[]);

The keyword const means your MEX-file does not modify the input
arguments, prhs.

Declaring Data Structures
Use type mxArray to handle MATLAB arrays. The following statement
declares an mxArray named myData:

mxArray *myData;

To define the values of myData, use one of the mxCreate* functions.
Some useful array creation routines are mxCreateNumericArray,

3-11

3 Intro to MEX-Files

mxCreateCellArray, and mxCreateCharArray. For example, the following
statement allocates an m-by-1 floating-point mxArray initialized to 0:

myData = mxCreateDoubleMatrix(m, 1, mxREAL);

C/C++ programmers should note that data in a MATLAB array is in
column-major order. (For an illustration, see “Data Storage” on page 3-20.)
Use the MATLAB mxGet* array access routines, described in “Manipulating
Data” on page 3-14, to read data from an mxArray.

Managing Input and Output Parameters
MATLAB passes data to and from MEX-files in a highly regulated way,
described in “Required Parameters” on page 4-3.

Input parameters (found in the prhs array) are read-only; do not modify
them in your MEX-file. Changing data in an input parameter can produce
undesired side effects.

You also must take care when using an input parameter to create output
data or any data used locally in your MEX-file. This is because of the way
MATLAB handles MEX-file cleanup after processing. For an example, see the
troubleshooting topic “Incorrectly Constructing a Cell or Structure mxArray”
on page 3-98.

If you want to copy an input array into your local myData array, call
mxDuplicateArray to make of copy of the input array before using it. For
example:

mxArray *myData = mxCreateStructMatrix(1,1,nfields,fnames);
mxSetField(myData,0,"myFieldName",mxDuplicateArray(prhs[0]));

Validating Inputs
Good programming practice requires you to validate inputs to your function.
MATLAB provides mxIs* routines for this purpose. The mxIsClass function
is a general-purpose way to test an mxArray.

3-12

MEX-Files Call C/C++ and Fortran Programs

For example, suppose your second input argument (identified by prhs[1])
must be a full matrix of real numbers. Use the following statements to check
this condition:

if(mxIsSparse(prhs[1]) ||
mxIsComplex(prhs[1]) ||
mxIsClass(prhs[1],"char")) {

mexErrMsgTxt("input2 must be full matrix of real values.");
}

This example is not an exhaustive check. You can also test for structures, cell
arrays, function handles, and MATLAB objects.

Allocating and Freeing Memory
MATLAB performs cleanup of MEX-file variables, as described in “Automatic
Cleanup of Temporary Arrays” on page 4-47. However, MathWorks®

recommends that MEX-file functions destroy their own temporary arrays and
free their own dynamically allocated memory. It is more efficient to perform
this cleanup in the source MEX-file than to rely on the automatic mechanism.

MATLAB manages memory and performs its own initialization and cleanup.
You must use the MATLAB-provided functions, such as mxMalloc and mxFree,
to manage memory. Do not use the standard C library counterparts; doing so
can produce unexpected results, including program termination.

For information on how MATLAB allocates memory for arrays and data
structures, see “Memory Allocation”.

Allocate memory for variables that your MEX-file uses. For example, if the
first input to your function (prhs[0]) is a string, in order to manipulate the
string, create a buffer buf of size buflen. The following statements declare
these variables:

char *buf;
int buflen;

The size of the buffer is dependent on the number of dimensions of your
input array and the size of the data in the array. This statement calculates
the size of buflen:

3-13

3 Intro to MEX-Files

buflen = mxGetN(prhs[0])*sizeof(mxChar)+1;

Now we can allocate memory for buf:

buf = mxMalloc(buflen);

At the end of the program, if you do not return buf as a plhs output
parameter (as described in “Cleaning Up and Exiting” on page 3-15), then
free its memory as follows:

mxFree(buf);

Manipulating Data
The mxGet* array access routines get references to the data in an mxArray.
Use these routines to modify data in your MEX-file. Each function provides
access to specific information in the mxArray. Some useful functions are
mxGetData, mxGetPr, mxGetM, and mxGetString. Many of these functions have
corresponding mxSet* routines to allow you to modify values in the array.

The following statements read the input string prhs[0] into a C-style string
buf:

char *buf;
int buflen;
int status;
buflen = mxGetN(prhs[0])*sizeof(mxChar)+1;
buf = mxMalloc(buflen);
status = mxGetString(prhs[0], buf, buflen);

Displaying Messages to the User
Use the mexPrintf function, as you would a C/C++ printf function, to print
a string in the MATLAB Command Window. Use the mexErrMsgIdAndTxt
and mexWarnMsgIdAndTxt functions to print error and warning information in
the Command Window.

For example, using the variables declared in the previous example, you can
print the input string prhs[0] as follows:

if (mxGetString(prhs[0], buf, buflen) == 0) {

3-14

MEX-Files Call C/C++ and Fortran Programs

mexPrintf("The input string is: %s\n", buf);
}

Handling Errors
The mexErrMsgIdAndTxt function prints error information and terminates
your binary MEX-file. The mexWarnMsgIdAndTxt function prints information,
but does not terminate the MEX-file. For example:

if (mxIsChar(prhs[0])) {
if (mxGetString(prhs[0], buf, buflen) == 0) {

mexPrintf("The input string is: %s\n", buf);
}
else {

mexErrMsgIdAndTxt("MyProg:ConvertString",
"Could not convert string data.");

// exit MEX-file
}

}
else {

mexWarnMsgIdAndTxt("MyProg:InputString",
"Input should be a string to print properly.");

}

// continue with processing

Cleaning Up and Exiting
As described in “Allocating and Freeing Memory” on page 3-13, destroy
any temporary arrays and free any dynamically allocated memory, except
if such an mxArray is returned in the output argument list, returned by
mexGetVariablePtr, or used to create a structure. Also, never delete input
arguments.

Use mxFree to free memory allocated by the mxCalloc, mxMalloc, or
mxRealloc functions. Use mxDestroyArray to free memory allocated by the
mxCreate* functions.

3-15

3 Intro to MEX-Files

Using Binary MEX-Files
Binary MEX-files are subroutines produced from C/C++ or Fortran source
code. They behave just like MATLAB scripts and built-in functions. While
scripts have a platform-independent extension .m, MATLAB identifies
MEX-files by platform-specific extensions. The following table lists the
platform-specific extensions for MEX-files.

Binary MEX-File Extensions

Platform Binary MEX-File Extension

Linux (64-bit) mexa64

Apple Macintosh
(64-bit)

mexmaci64

Microsoft Windows
(32-bit)

mexw32

Windows (64-bit) mexw64

You call MEX-files exactly as you call any MATLAB function. For example,
on a Windows platform, there is a binary MEX-file called histc.mexw32
(in the MATLAB toolbox folder matlabroot\toolbox\matlab\datafun)
that performs a histogram count. The file histc.m contains the help text
documentation. When you call histc from MATLAB, the dispatcher looks
through the list of folders on the MATLAB search path. It scans each
folder looking for the first occurrence of a file named histc with either the
corresponding file name extension from the table or .m. When it finds one,
it loads the file and executes it. Binary MEX-files take precedence over .m
files when like-named files exist in the same folder. However, help text
documentation still reads from the .m file.

You cannot use a binary MEX-file on a platform if you compiled it on a
different platform. Recompile the source code on the platform for which you
want to use the MEX-file.

3-16

MEX-Files Call C/C++ and Fortran Programs

Binary MEX-File Placement
Put your MEX-files in a folder on the MATLAB path. Alternatively, run
MATLAB from the folder containing the MEX-file. MATLAB runs functions
in the current working folder before functions on the path.

Use path to see the current folders on your path. You can add new folders to
the path either by using the addpath function, or by selecting File > SetPath
to edit the path.

If you use a Windows operating system and your binary MEX-files are on a
network drive, be aware that file servers do not always report folder and file
changes correctly. If you change a MEX-file on a network drive and find that
MATLAB does not use the latest changes, you can force MATLAB to look for
the correct version of the file by changing folders away from and then back to
the folder containing the file.

Using Help Files with MEX-Files
You can document the behavior of your MEX-files by writing a MATLAB
script containing comment lines. For information, see “Add Help for
Your Program”. The help command automatically finds and displays the
appropriate text when help is requested and the interpreter finds and
executes the corresponding MEX-file when the function is invoked.

Workspace for MEX-File Functions
Unlike MATLAB functions, MEX-file functions (binary MEX-files) do not
have their own variable workspace. MEX-file functions operate in the caller’s
workspace. mexEvalString evaluates the string in the caller’s workspace. In
addition, you can use the mexGetVariable and mexPutVariable routines to
get and put variables into the caller’s workspace.

3-17

3 Intro to MEX-Files

MATLAB Data

In this section...

“The MATLAB Array” on page 3-18

“Lifecycle of mxArray” on page 3-18

“Data Storage” on page 3-20

“MATLAB Types” on page 3-21

“Sparse Matrices” on page 3-23

“Using Data Types” on page 3-23

“Testing for Most-Derived Class” on page 3-25

The MATLAB Array
The MATLAB language works with a single object type: the MATLAB array.
All MATLAB variables (including scalars, vectors, matrices, strings, cell
arrays, structures, and objects) are stored as MATLAB arrays. In C/C++, the
MATLAB array is declared to be of type mxArray. The mxArray structure
contains the following information about the array:

• Its type

• Its dimensions

• The data associated with this array

• If numeric, whether the variable is real or complex

• If sparse, its indices and nonzero maximum elements

• If a structure or object, the number of fields and field names

To access the mxArray structure, use the API functions in the MX Matrix
Library. These functions allow you to create, read, and query information
about the MATLAB data in your MEX-files.

Lifecycle of mxArray
Like MATLAB functions, a MEX-file gateway routine passes MATLAB
variables by reference. However, these arguments are C pointers. A pointer

3-18

MATLAB® Data

to a variable is the address (location in memory) of the variable. MATLAB
functions handle data storage for you automatically. When passing data
to a MEX-file, you use pointers, which follow specific rules for accessing
and manipulating variables. For information about working with pointers,
refer to a programming reference, such as The C Programming Language by
Kernighan, B. W., and D. M. Ritchie.

Note Since variables use memory, you need to understand how your
MEX-file creates an mxArray and your responsibility for releasing (freeing)
the memory. This is important to prevent memory leaks. The lifecycle of an
mxArray—and the rules for managing memory—depends on whether it is an
input argument, output argument, or local variable. The function you call to
deallocate an mxArray depends on the function you used to create it, which is
listed in the create function’s MX Matrix Library documentation.

Input Argument prhs
An mxArray passed to a MEX-file through the prhs input parameter exists
outside the scope of the MEX-file. Do not free memory for any mxArray in the
prhs parameter. Additionally, prhs variables are read-only; do not modify
them in your MEX-file.

Output Argument plhs
If you create an mxArray (allocate memory and create data) for an output
argument, the memory and data exist beyond the scope of the MEX-file. Do
not free memory on an mxArray returned in the plhs output parameter.

Local Variable
You allocate memory whenever you use an mxCreate* function to create an
mxArray or when you call the mxCalloc and associated functions. After
observing the rules for handling input and output arguments, the MEX-file
should destroy temporary arrays and free dynamically allocated memory.
To deallocate memory, use either mxDestroyArray or mxFree. Refer to the
MX Matrix Library function documentation for information about which
function to use.

3-19

3 Intro to MEX-Files

Data Storage
MATLAB stores data in a column-major (columnwise) numbering scheme,
which is how Fortran stores matrices. MATLAB uses this convention because
it was originally written in Fortran. MATLAB internally stores data elements
from the first column first, then data elements from the second column
second, and so on, through the last column.

For example, given the matrix:

a=['house'; 'floor'; 'porch']
a =

house
floor
porch

its dimensions are:

size(a)
ans =

3 5

and its data is stored as:

If a matrix is N-dimensional, MATLAB represents the data in N-major
order. For example, consider a three-dimensional array having dimensions
4-by-2-by-3. Although you can visualize the data as:

3-20

MATLAB® Data

MATLAB internally represents the data for this three-dimensional array
in the following order:

A B C D E F G H I J K L M N O P Q R S T U V W X

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

The mxCalcSingleSubscript function creates the offset from the first
element of an array to the desired element, using N-dimensional subscripting.

MATLAB Types

Complex Double-Precision Matrices
The most common data type in MATLAB is the complex double-precision,
nonsparse matrix. These matrices are of type double and have dimensions
m-by-n, where m is the number of rows and n is the number of columns. The
data is stored as two vectors of double-precision numbers—one contains the
real data and one contains the imaginary data. The pointers to this data are
referred to as pr (pointer to real data) and pi (pointer to imaginary data),
respectively. A noncomplex matrix is one whose pi is NULL.

3-21

3 Intro to MEX-Files

Numeric Matrices
MATLAB also supports other types of numeric matrices. These are
single-precision floating-point and 8-, 16-, and 32-bit integers, both signed
and unsigned. The data is stored in two vectors in the same manner as
double-precision matrices.

Logical Matrices
The logical data type represents a logical true or false state using the
numbers 1 and 0, respectively. Certain MATLAB functions and operators
return logical 1 or logical 0 to indicate whether a certain condition was found
to be true or not. For example, the statement (5 * 10) > 40 returns a logical
1 value.

MATLAB Strings
MATLAB strings are of type char and are stored the same way as unsigned
16-bit integers except there is no imaginary data component. Unlike C,
MATLAB strings are not null terminated.

Cell Arrays
Cell arrays are a collection of MATLAB arrays where each mxArray is referred
to as a cell. This allows MATLAB arrays of different types to be stored
together. Cell arrays are stored in a similar manner to numeric matrices,
except the data portion contains a single vector of pointers to mxArrays.
Members of this vector are called cells. Each cell can be of any supported
data type, even another cell array.

Structures
A 1-by-1 structure is stored in the same manner as a 1-by-n cell array where n
is the number of fields in the structure. Members of the data vector are called
fields. Each field is associated with a name stored in the mxArray.

Objects
Objects are stored and accessed the same way as structures. In MATLAB,
objects are named structures with registered methods. Outside MATLAB, an
object is a structure that contains storage for an additional class name that
identifies the name of the object.

3-22

MATLAB® Data

Multidimensional Arrays
MATLAB arrays of any type can be multidimensional. A vector of integers is
stored where each element is the size of the corresponding dimension. The
storage of the data is the same as matrices.

Empty Arrays
MATLAB arrays of any type can be empty. An empty mxArray is one with at
least one dimension equal to zero. For example, a double-precision mxArray of
type double, where m and n equal 0 and pr is NULL, is an empty array.

Sparse Matrices
Sparse matrices have a different storage convention from that of full matrices
in MATLAB. The parameters pr and pi are still arrays of double-precision
numbers, but these arrays contain only nonzero data elements. There are
three additional parameters: nzmax, ir, and jc.

• nzmax is an integer that contains the length of ir, pr, and, if it exists, pi. It
is the maximum possible number of nonzero elements in the sparse matrix.

• ir points to an integer array of length nzmax containing the row indices of
the corresponding elements in pr and pi.

• jc points to an integer array of length n+1, where n is the number of
columns in the sparse matrix. The jc array contains column index
information. If the jth column of the sparse matrix has any nonzero
elements, jc[j] is the index in ir and pr (and pi if it exists) of the first
nonzero element in the jth column, and jc[j+1] - 1 is the index of the
last nonzero element in that column. For the jth column of the sparse
matrix, jc[j] is the total number of nonzero elements in all preceding
columns. The last element of the jc array, jc[n], is equal to nnz, the
number of nonzero elements in the entire sparse matrix. If nnz is less
than nzmax, more nonzero entries can be inserted into the array without
allocating additional storage.

Using Data Types
You can write source MEX-files, MAT-file applications, and engine
applications in C/C++ that accept any class or data type supported by
MATLAB (see “Data Types”). In Fortran, only the creation of double-precision

3-23

3 Intro to MEX-Files

n-by-m arrays and strings are supported. You use binary C/C++ and Fortran
MEX-files like MATLAB functions.

Caution MATLAB does not check the validity of MATLAB data structures
created in C/C++ or Fortran using one of the MX Matrix Library create
functions (for example, mxCreateStructArray). Using invalid syntax to
create a MATLAB data structure can result in unexpected behavior in your
C/C++ or Fortran program.

The explore Example
There is an example source MEX-file included with MATLAB, called
explore.c, that identifies the data type of an input variable. The source code
for this example is in matlabroot/extern/examples/mex, where matlabroot
represents the top-level folder where MATLAB is installed on your system.

Note In platform-independent discussions that refer to folder paths, this book
uses the UNIX convention. For example, a general reference to the mex folder
is matlabroot/extern/examples/mex.

For example, typing:

cd([matlabroot '/extern/examples/mex']);
x = 2;
explore(x);

produces this result:

--
Name: prhs[0]
Dimensions: 1x1
Class Name: double
--
(1,1) = 2

explore accepts any data type. Try using explore with these examples:

3-24

MATLAB® Data

explore([1 2 3 4 5])
explore 1 2 3 4 5
explore({1 2 3 4 5})
explore(int8([1 2 3 4 5]))
explore {1 2 3 4 5}
explore(sparse(eye(5)))
explore(struct('name', 'Joe Jones', 'ext', 7332))
explore(1, 2, 3, 4, 5)

Testing for Most-Derived Class
If you define functions that require inputs that are:

• MATLAB built-in types

• Not subclasses of MATLAB built-in types

use the following technique to exclude subclasses of built-in types from the
input arguments.

• Define a cell array that contains the names of built-in types accepted by
your function.

• Call class and strcmp to test for specific types in a MATLAB control
statement.

The following code tests an input argument, inputArg:

if strcmp(class(inputArg),'single')
% Call function

else
inputArg = single(inputArg);

end

Testing for a Category of Types
Suppose you create a MEX-function, myMexFcn, that requires two numeric
inputs that must be of type double or single:

outArray = myMexFcn(a,b)

Define a cell array floatTypes that contains the strings double and single:

3-25

3 Intro to MEX-Files

floatTypes = {'double','single'};

% Test for proper types
if any(strcmp(class(a),floatTypes)) && ...

any(strcmp(class(b),floatTypes))
outArray = myMexFcn(a,b);

else
% Try to convert inputs to avoid error
...

end

Another Test for Built-In Types
You can use isobject to separate built-in types from subclasses of built-in
types. The isobject function returns false for instances of built-in types.
For example:

% Create a int16 array
a = int16([2,5,7,11]);
isobject(a)

ans =
0

Determine if an array is one of the built-in integer types:

if isa(a,'integer') && ~isobject(a)
% a is a built-in integer type
...

end

3-26

Build MEX-Files

Build MEX-Files

In this section...

“What You Need to Build MEX-Files” on page 3-27

“Selecting a Compiler on Windows Platforms” on page 3-28

“Selecting a Compiler on UNIX Platforms” on page 3-33

“Linking Multiple Files” on page 3-36

“Overview of Building the timestwo MEX-File” on page 3-36

What You Need to Build MEX-Files
You need a compiler and the mex function to build MEX-files. MATLAB
software supports many compilers and provides computer configuration
files, called options files, designed specifically for these compilers. For an
up-to-date list of supported compilers, see the Supported and Compatible
Compilers Web page.

On 32-bit Microsoft Windows platforms, MATLAB provides a C compiler, Lcc.
To view Help on using the Lcc compiler, type:

winopen(fullfile(matlabroot, '\sys\lcc\bin\wedit.hlp'))

If you have multiple compilers installed on your system, you can choose which
compiler to use, as described in “Selecting a Compiler on Windows Platforms”
on page 3-28 or “Selecting a Compiler on UNIX Platforms” on page 3-33.

To help you configure your system using a sample MEX-file, see “Overview
of Building the timestwo MEX-File” on page 3-36.

For information about creating MEX-files, see “Creating a Source MEX-File”
on page 3-5.

If you have difficulty creating MEX-files, refer to “Troubleshoot MEX-Files”.

3-27

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

3 Intro to MEX-Files

Selecting a Compiler on Windows Platforms
A selected compiler configuration specifies the compiler and build options
MATLAB uses every time you invoke the mex build script. The compiler in this
configuration is the selected compiler. It is the program that compiles source
code into object code. A configuration is the set of programs and instructions
that builds source code into shared libraries and standalone executable files.

To select a configuration, use the mex -setup command. You can set or change
the configuration anytime, from either the MATLAB or the system command
prompt. After you choose a configuration, it becomes the default and you no
longer have to select one to compile MEX-files.

You can view information about the selected compiler configuration using the
mex.getCompilerConfigurations function.

You can change the compiler configuration for a single call to the mex script
using the -f switch, which specifies an options file. Subsequent calls to mex
continue to use the selected compiler configuration.

For more information about these topics, see:

• “Viewing Supported Windows Compilers” on page 3-28

• “Selecting a Windows Compiler Configuration” on page 3-29

• “Getting Windows Configuration Information” on page 3-31

• “Specifying a Windows Options File” on page 3-32

Viewing Supported Windows Compilers
To see the list of supported compilers on the Windows platform, type:

mex -setup

MATLAB displays the following dialog. The text has been formatted to fit
the page.

3-28

Build MEX-Files

Note The list of compilers shown in your version of MATLAB might be
different from the list shown in this example. For an up-to-date list of
supported compilers, see the Supported and Compatible Compilers Web page.

Please choose your compiler for building external interface (MEX) files:

Would you like mex to locate installed compilers [y]/n? N

Select a compiler:
[1] Intel C++ 9.1 (with Microsoft Visual C++ 2005 linker)
[2] Intel Visual Fortran 10.1 (with Microsoft Visual C++ 2005 linker)
[3] Intel Visual Fortran 9.1 (with Microsoft Visual C++ 2005 linker)
[4] Lcc-win32 C 2.4.1
[5] Microsoft Visual C++ 6.0
[6] Microsoft Visual C++ .NET 2003
[7] Microsoft Visual C++ 2005
[8] Microsoft Visual C++ 2005 Express Edition
[9] Microsoft Visual C++ 2008
[10] Open WATCOM C++
[11] Open WATCOM C++ 1.3

[0] None

Compiler: 0

Done . . .

Selecting a Windows Compiler Configuration
MATLAB helps you choose a compiler configuration by generating a list of
either:

• All supported compilers. This is the same information found on the
Supported and Compatible Compilers Web page. To see this list, follow the
instructions in “Viewing Supported Windows Compilers” on page 3-28.

• Installed compilers found on your system. Only compilers supported by
MATLAB are in this list.

3-29

http://www.mathworks.com/support/compilers/current_release/

3 Intro to MEX-Files

To select a configuration from a list of supported compilers found on your
system, type:

mex -setup

MATLAB displays the following dialog. The text has been formatted to fit
the page.

Note The list of compilers shown on your system might be different from the
list shown in this example. The path names to your compilers might also be
different. For an up-to-date list of supported compilers, see the Supported
and Compatible Compilers Web page.

Please choose your compiler for building external interface (MEX)

files.

Would you like mex to locate installed compilers [y]/n? y

Select a compiler:

[1] Intel Visual Fortran 9.1 (with Microsoft Visual C++ 2005 linker) in

C:\Program Files\Intel\Compiler\Fortran\9.1

[2] Lcc-win32 C 2.4.1 in C:\PROGRA~1\MATLAB\R2007b\sys\lcc

[3] Microsoft Visual C++ 2005 in

C:\Program Files\Microsoft Visual Studio 8

[0] None

Compiler: 2

Please verify your choices:

Compiler: Lcc-win32 C 2.4.1

Location: C:\PROGRA~1\MATLAB\R2007b\sys\lcc

Are these correct?([y]/n): y

Trying to update options file:

C:\WINNT\Profiles\auser\Application Data\MathWorks\MATLAB\R2007b\

3-30

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

Build MEX-Files

mexopts.bat

From template:

C:\PROGRA~1\MATLAB\R2007b\bin\win32\mexopts\lccopts.bat

Done . . .

When to Change the Selected Compiler Configuration. On Windows
systems, if you create C/C++ and Fortran MEX-files, you must choose the
appropriate compiler for the language you are using. If your selected compiler
is the wrong language, it generates error messages. To see the language of
your selected compiler, type:

cc = mex.getCompilerConfigurations;
cc.Language

You can change the compiler using either mex -setup or by “Specifying a
Windows Options File” on page 3-32.

Getting Windows Configuration Information
On Windows systems, there is one compiler configuration. Use the
mex.getCompilerConfigurations function to find the selected compiler
configuration.

To get information about the selected compiler, type:

cc = mex.getCompilerConfigurations

MATLAB creates a mex.CompilerConfiguration object cc and displays its
properties:

cc =

mex.CompilerConfiguration
package: mex

properties:
Name: 'Microsoft Visual C++ 2005'

Manufacturer: 'Microsoft'
Language: 'C++'
Version: '8.0'

3-31

3 Intro to MEX-Files

Location: 'C:\Program Files\Microsoft Visual Studio 8'
Details: [1x1 mex.CompilerConfigurationDetails]

list of methods

To see the build options used by the selected compiler, type:

ccOptions = cc.Details

MATLAB creates a mex.CompilerConfigurationDetails object ccOptions
and displays the options:

ccOptions =

mex.CompilerConfigurationDetails
package: mex

properties:
CompilerExecutable: 'cl'

CompilerFlags: [1x120 char]
OptimizationFlags: '/O2 /Oy- /DNDEBUG'

DebugFlags: '/Zi /Fd"%OUTDIR%%MEX_NAME%%MEX_EXT%.pdb"'
LinkerExecutable: 'link'

LinkerFlags: [1x257 char]
LinkerOptimizationFlags: ''

LinkerDebugFlags: '/DEBUG
/PDB:"%OUTDIR%%MEX_NAME%%MEX_EXT%.pdb"'

list of methods

Specifying a Windows Options File
MATLAB includes template options files you can use with particular
compilers. The options files are located in the following folders.

Platform Folder

32-bit Windows matlabroot\bin\win32\mexopts

64-bit Windows matlabroot\bin\win64\mexopts

3-32

Build MEX-Files

On Windows systems, the options file has a .bat file extension.

For information on how to modify options files for particular systems, see
“Custom Building MEX-Files” on page 3-43.

Use the -f option to specify an options file. To use this option, at the MATLAB
prompt, type:

mex filename -f optionsfile

where optionsfile is the full path to the options file.

You might need to specify an options file if you want to use a different
compiler (and not use the -setup option), or you want to compile MAT or
engine standalone programs.

Selecting a Compiler on UNIX Platforms
A selected compiler configuration specifies the compiler and build options
MATLAB uses every time you invoke the mex build script. The compiler in this
configuration is the selected compiler. It is the program that compiles source
code into object code. A configuration is the set of programs and instructions
that builds source code into shared libraries and standalone executable files.

To select a configuration, use the mex -setup command. You can set or change
the configuration anytime, from either the MATLAB or the system command
prompt. After you choose a configuration, it becomes the default and you no
longer have to select one to compile MEX-files.

You can view information about the selected compiler configuration using the
mex.getCompilerConfigurations function.

You can change the compiler configuration for a single call to the mex script
using the -f switch, which specifies an options file. Subsequent calls to mex
continue to use the selected compiler configuration.

For more information about these topics, see:

• “Selecting a UNIX Compiler Configuration” on page 3-34

• “Getting UNIX Configuration Information” on page 3-34

3-33

3 Intro to MEX-Files

• “Specifying a UNIX Options File” on page 3-35

Selecting a UNIX Compiler Configuration
You can set or change your compiler configuration anytime from either the
MATLAB command prompt or the UNIX shell, using the command:

mex -setup

MATLAB generates a list of the available compiler configurations, called
options files. To choose a compiler, type the number corresponding to your
selection. (If you do not want to change your configuration, type 0. MATLAB
returns to the command prompt.) MATLAB displays information about the
chosen file.

Getting UNIX Configuration Information
On UNIX systems, there are three configurations, one for each compiler
language (C, C++ and Fortran). Use the mex.getCompilerConfigurations
function to view details about the compiler configurations.

To get information about the compiler configuration, type:

cc = mex.getCompilerConfigurations

MATLAB creates a mex.CompilerConfiguration object cc and displays its
properties:

cc =

1x3 mex.CompilerConfiguration
package: mex

properties:
Name
Manufacturer
Language
Version
Location
Details

3-34

Build MEX-Files

list of methods

On the UNIX platform, cc is an array of three CompilerConfiguration
objects – one for each language (C, C++, and Fortran). To see the compiler
names, type:

disp('Compiler Name')
for i = 1:3; disp(cc(i).Name); end;

MATLAB displays information like:

Compiler Name
GNU C
GNU C++
g95

Note On UNIX systems, mex.CompilerConfiguration.Location is an
empty string

Specifying a UNIX Options File
MATLAB includes template options files you can use with particular
compilers. The options files are located in matlabroot/bin.

The UNIX options file is named *opts.sh, where * is either mex or a specific
compiler name.

For information on how to modify options files for particular systems, see
“Custom Building MEX-Files” on page 3-43.

Use the -f option to specify an options file. To use this option, at the MATLAB
prompt, type:

mex filename -f optionsfile

where optionsfile is the full path to the options file.

3-35

3 Intro to MEX-Files

You might need to specify an options file in the following situations:

• You want to use a different compiler (and not use the -setup option), or
you want to compile MAT or engine standalone programs.

• You do not want to use the system C/C++ compiler.

Linking Multiple Files
You can combine multiple source files, object files, and file libraries to build a
binary MEX-file. To do this, list the additional files, with their file extensions,
separated by spaces. The name of the MEX-file is the name of the first file in
the list.

The following command combines multiple files of different types into a
binary MEX-file called circle.ext, where ext is the extension corresponding
to the current platform:

mex circle.c square.obj rectangle.c shapes.lib

For a Fortran files, type:

mex circle.F square.o rectangle.F shapes.o

You may find it useful to use a software development tool like MAKE to manage
MEX-file projects involving multiple source files. Create a MAKEFILE that
contains a rule for producing object files from each of your source files, and
then invoke the mex build script to combine your object files into a binary
MEX-file. This way you can ensure that your source files are recompiled
only when necessary.

Overview of Building the timestwo MEX-File
MATLAB provides an example MEX-file, timestwo, for you to use to configure
your system. This function takes a scalar input and doubles it.

The C source file is timestwo.c, and the Fortran source file is timestwo.F.
These files are in matlabroot\extern\examples\refbook, where matlabroot
is the MATLAB root folder, the value returned by the matlabroot command.

To work with these files, copy them to a local folder. For example:

3-36

Build MEX-Files

cd('c:\work')
copyfile([matlabroot '\extern\examples\refbook\timestwo.c'])
copyfile([matlabroot '\extern\examples\refbook\timestwo.F'])

To select your compiler, follow the instructions in either “Selecting a Compiler
on UNIX Platforms” on page 3-33 or “Selecting a Compiler on Windows
Platforms” on page 3-28.

Use the mex function to build the binary MEX-file. If you are using a C/C++
compiler, type:

mex timestwo.c

If you are using a Fortran compiler, type:

mex timestwo.F

This command creates the file timestwo.ext, where ext is the value returned
by the mexext function. You call timestwo as if it were a MATLAB function.
For example, at the MATLAB command prompt, type:

timestwo(4)

MATLAB displays:

ans =
8

For information about mex options, see “MEX Script Switches” on page 3-43.

For information about the large-array-handling API, see “Handling Large
mxArrays” on page 4-43.

Note In a future version of MATLAB, the default mex function will change to
use the large-array-handling API. This means the -largeArrayDims option
will be the default and you must review your MEX-files, as described in
“Upgrade MEX-Files to Use 64-Bit API” on page 3-71.

3-37

3 Intro to MEX-Files

Table of MEX-File Source Code Files
Source code for the MEX examples shown in the following table are in
subfolders of matlabroot/extern/examples.

To build a C code example, first copy the file to a writable folder, such as
c:\work, on your path:

copyfile(fullfile(matlabroot,'extern','examples','foldername',...
'filename.c'), fullfile('c:','work'));

where filename is the name of the example and foldername is the subfolder
name.

Make sure that you have a C/C++ compiler selected using the mex -setup
command.

You can create and compile MEX-files in MATLAB or at your operating
system prompt. MATLAB uses the mex.m file. The Microsoft Windows
operating system uses the mex.bat file, and UNIX uses the mex.sh file.

At either prompt, type:

mex -v filename.c

MEX Examples

Example Name Example Subfolder Description

arrayFillGetPr.c refbook Fill mxArray using
mxGetPr

arrayFillSetData.c refbook Fill mxArray with
non-double values

arrayFillSetPr.c refbook Fill mxArray
using mxSetPr to
dynamically allocate
memory

arrayProduct.c mex Multiply a scalar times
1xN matrix

3-38

Table of MEX-File Source Code Files

MEX Examples (Continued)

Example Name Example Subfolder Description

arraySize.c mex Illustrate memory
requirements of large
mxArray

convec.c
convec.F

refbook Pass complex data

dblmat.F
compute.F

refbook Use of Fortran %VAL

dotProductComplex.c refbook Handle Fortran
complex return type
for function called from
a C MEX-file

doubleelement.c refbook Use unsigned 16-bit
integers

explore.c mex Identify data type of
input variable

findnz.c refbook Use N-dimensional
arrays

fulltosparse.c
fulltosparse.F
loadsparse.F

refbook Populate a sparse
matrix

matrixDivide.c refbook Call a LAPACK
function

matrixDivideComplex.c refbook Call a LAPACK
function with complex
numbers

matrixMultiply.c refbook Call a BLAS function

matsq.F refbook Pass matrices in
Fortran

matsqint8.F refbook Pass non-double
matrices in Fortran

3-39

3 Intro to MEX-Files

MEX Examples (Continued)

Example Name Example Subfolder Description

mexatexit.c
mexatexit.cpp

mex Register an exit
function to close a
data file

mexcallmatlab.c mex Call built-in MATLAB
disp function

mexcallmatlabwithtrap.cmex How to capture error
information

mexcpp.cpp mex Illustrate some C++
language features in a
MEX-file

mexevalstring.c mex Use mexEvalString
to assign variables in
MATLAB

mexfunction.c mex How to use
mexfunction

mexget.c mex Use mexGet and mexSet
to change Color
property of a graphics
handle

mexgetarray.c mex Use mexGetVariable
and mexPutVariable
to track counters in
the MEX-file and in
the MATLAB global
workspace

mexlock.c
mexlockf.F

mex How to lock and unlock
a MEX-file

mxcalcsinglesubscript.cmx Demonstrate MATLAB
1-based matrix
indexing versus C
0-based indexing

3-40

Table of MEX-File Source Code Files

MEX Examples (Continued)

Example Name Example Subfolder Description

mxcreatecellmatrix.c
mxcreatecellmatrixf.F

mx Create 2-D cell array

mxcreatecharmatrixfromstr.cmx Create 2-D string array

mxcreatestructarray.c mx Create MATLAB
structure from C
structure

mxgeteps.c
mxgetepsf.F

mx Read MATLAB eps
value

mxgetinf.c mx Read inf value

mxgetnzmax.c mx Display number of
nonzero elements in
a sparse matrix and
maximum number of
nonzero elements it can
store

mxisclass.c mx Check if array is
member of specified
class

mxisfinite.c mx Check for NaN and
infinite values

mxislogical.c mx Check if workspace
variable is logical or
global

mxmalloc.c mx Allocate memory to
copy a MATLAB string
to a C string

mxsetdimensions.c
mxsetdimensionsf.F

mx Reshape an array

3-41

3 Intro to MEX-Files

MEX Examples (Continued)

Example Name Example Subfolder Description

mxsetnzmax.c mx Reallocate memory for
sparse matrix and reset
values of pr, pi, ir and
nzmax

passstr.F refbook Pass C character
matrix from Fortran
to MATLAB

phonebook.c refbook Manipulate structures
and cell arrays

revord.c
revord.F

refbook Copy MATLAB string
data to and from C-style
string

sincall.c
sincall.F
fill.F

refbook Create mxArray and
pass to MATLAB sin
and plot functions

timestwo.c
timestwo.F

refbook Demonstrate common
workflow of MEX-file

utdu_slv.c refbook Use LAPACK for
symmetric indefinite
factorization

xtimesy.c
xtimesy.F

refbook Pass multiple
parameters

yprime.c
yprimef.F
yprimefg.F

mex Solve simple 3 body
orbit problem

3-42

Custom Building MEX-Files

Custom Building MEX-Files

In this section...

“When to Use Custom Building” on page 3-43

“MEX Script Switches” on page 3-43

“Custom Building on UNIX Systems” on page 3-47

“Custom Building on Windows Systems” on page 3-52

When to Use Custom Building
In general, the defaults that come with MATLAB software should be sufficient
for building most binary MEX-files. Following are reasons that you might
need more detailed information:

• You want to use an Integrated Development Environment (IDE), rather
than the provided script, to build MEX-files.

• You want to create an options file, for example, to use a compiler that is
unsupported.

• You want to exercise more control over the build process than the script
uses.

The script, in general, uses two stages (or three, for Microsoft Windows
platforms) to build MEX-files. These are the compile stage and the link
stage. In between these two stages, Windows compilers must perform some
additional steps to prepare for linking (the prelink stage).

MEX Script Switches
The mex script has a set of switches (also called options) that you can use to
modify the link and compile stages. The MEX Script Switches table lists the
available switches and their uses. Each switch is available on both UNIX and
Windows systems unless otherwise noted.

For customizing the build process, you should modify the options file, which
contains the compiler-specific flags corresponding to the general compile,
prelink, and link steps required on your system. The options file consists of

3-43

3 Intro to MEX-Files

a series of variable assignments; each variable represents a different logical
piece of the build process.

Switch Function

@rsp_file (Windows systems only) Include the contents of
the text file rsp_file as command-line arguments
to mex.

-arch Build an output file for architecture arch.
To determine the value for arch, type
computer('arch') at the MATLAB Command
Prompt on the target machine. Valid values for
arch depend on the architecture of the build
platform.

-c Compile only. Creates an object file, but not a
binary MEX-file.

-compatibleArrayDims Build a binary MEX-file using the MATLAB
Version 7.2 array-handling API, which limits
arrays to 231-1 elements. Default option. (See the
-largeArrayDims option.)

In verbose mode, if you do not specify either the
-largeArrayDims or the -compatibleArrayDims
switches, MATLAB displays a message showing
the default switch.

-cxx (UNIX systems only) Use the C++ linker to link
the MEX-file if the first source file is in C and
there are one or more C++ source or object files.
This option overrides the assumption that the
first source file in the list determines which linker
to use.

-Dname Define a symbol name to the C preprocessor.
Equivalent to a #define name directive in the
source.

Do not add a space after this switch.

3-44

Custom Building MEX-Files

(Continued)

Switch Function

-Dname=value Define a symbol name and value to the C
preprocessor. Equivalent to a #define name value
directive in the source.

Do not add a space after this switch.

-f optionsfile Specify location and name of options file to use.
Overrides the mex default-options-file search
mechanism.

-fortran (UNIX systems only) Specify that the gateway
routine is in Fortran. This option overrides the
assumption that the first source file in the list
determines which linker to use.

-g Create a binary MEX-file containing additional
symbolic information for use in debugging.
This option disables the mex default behavior of
optimizing built object code (see the -O option).

-h[elp] Print help for mex.

-Ipathname Add pathname to the list of folders to search for
#include files.

Do not add a space after this switch.

-inline This option has been removed.

-lname Link with object library. On Windows systems,
name expands to name.lib or libname.lib and on
UNIX systems, to libname.so or libname.dylib.

Do not add a space after this switch.

3-45

3 Intro to MEX-Files

(Continued)

Switch Function

-Lfolder Add folder to the list of folders to search for
libraries specified with the -l option. On UNIX
systems, you must also set the run-time library
path, as explained in “Setting Run-Time Library
Path” on page 1-22.

Do not add a space after this switch.

-largeArrayDims Build a binary MEX-file using the MATLAB
large-array-handling API. This API can handle
arrays with more than 231-1 elements. (See the
-compatibleArrayDims option.)

In verbose mode, if you do not specify either the
-largeArrayDims or the -compatibleArrayDims
switches, MATLAB displays a message showing
the default switch.

-n No execute mode. Print any commands that
mex would otherwise have executed, but do not
actually execute any of them.

-O Optimize the object code. Optimization is enabled
by default and by including this option on the
command line. If the -g option appears without
the -O option, optimization is disabled.

-outdir dirname Place all output files in folder dirname.

-output resultname Create binary MEX-file named resultname.
Automatically appends the appropriate MEX-file
extension. Overrides the default MEX-file naming
mechanism.

-setup Specify the compiler options file to use when
calling the mex function. When you use this option,
all other command-line options are ignored.

3-46

Custom Building MEX-Files

(Continued)

Switch Function

-Uname Remove any initial definition of the C preprocessor
symbol name. (Inverse of the -D option.)

Do not add a space after this switch.

-v Verbose mode. Print the values for important
internal variables after the options file is
processed and all command-line arguments are
considered. Prints each compile step and final
link step fully evaluated.

name=value Override an options file variable for variable name.
For examples, see Override Option Details on mex
reference page.

Custom Building on UNIX Systems
On UNIX systems, there are two stages in MEX-file building: compiling and
linking.

Compile Stage on UNIX Systems
The compile stage must

• Add matlabroot/extern/include to the list of folders in which to find
header files (-Imatlabroot/extern/include).

• Define the preprocessor macro MATLAB_MEX_FILE (-DMATLAB_MEX_FILE).

• Compile the source file.

Link Stage on UNIX Systems
The link stage must

• Instruct the linker to build a shared library.

3-47

3 Intro to MEX-Files

• If you link with your own libraries, set the run-time library path, which is
explained in “Setting Run-Time Library Path” on page 1-22.

• Link all objects from compiled source files.

• Export the mexFunction symbol, representing function called by MATLAB.

For Fortran MEX-files, the symbols are all lowercase and might have
appended underscores. For specific information, invoke the mex script in
verbose mode and examine the output.

Build Options on UNIX Systems
For customizing the build process, you should modify the options file.
The options file contains the compiler-specific flags corresponding to the
general steps outlined above. The options file consists of a series of variable
assignments. Each variable represents a different logical piece of the
build process. The options files provided with MATLAB are located in
matlabroot/bin. The section “UNIX Default Options File” on page 3-49,
describes how the mex script looks for an options file.

To aid in providing flexibility, there are two sets of options in the options file
that you can turn on and off with switches to the mex script. These sets of
options correspond to building in debug mode and building in optimization
mode. They are represented by the variables DEBUGFLAGS and OPTIMFLAGS,
respectively, one pair for each driver that is invoked (CDEBUGFLAGS for the
C/C++ compiler, FDEBUGFLAGS for the Fortran compiler, and LDDEBUGFLAGS for
the linker; similarly for the OPTIMFLAGS):

• If you build in optimization mode (the default), the mex script includes the
OPTIMFLAGS options in the compile and link stages.

• If you build in debug mode, the mex script includes the DEBUGFLAGS options
in the compile and link stages. It does not include the OPTIMFLAGS options.

• You can include both sets of options by specifying both the optimization and
debugging flags to the mex script (-O and -g, respectively).

Aside from these special variables, the mex options file defines the executable
invoked for each mode (C/C++ compile, Fortran compile, link) and the flags for
each stage. You also can provide explicit lists of libraries that must be linked
in to all MEX-files containing source files of each language.

3-48

Custom Building MEX-Files

The variable summary follows.

Variable C Compiler C++ Compiler
Fortran
Compiler Linker

Executable CC CXX FC LD

Flags CFLAGS CXXFLAGS FFLAGS LDFLAGS

Optimization COPTIMFLAGS CXXOPTIMFLAGS FOPTIMFLAGS LDOPTIMFLAGS

Debugging CDEBUGFLAGS CXXDEBUGFLAGS FDEBUGFLAGS LDDEBUGFLAGS

Additional
libraries

CLIBS CXXLIBS FLIBS (none)

For specifics on the default settings for these variables, you can

• Examine the options file in matlabroot/bin/mexopts.sh (or the options
file you are using), or

• Invoke the mex script in verbose mode.

UNIX Default Options File
The default MEX options file provided with MATLAB is located in
matlabroot/bin. The mex script searches for an options file called
mexopts.sh in the following order:

• The location and options file specified with the mex -f switch

• The current folder

• The folder specified by matlabroot/bin

• The folder returned by the prefdir function

mex uses the first occurrence of the options file it finds. If no options file is
found, mex displays an error message. You can directly specify the name of
the options file using the -f switch.

The UNIX options file is written in the Bourne shell script language.

3-49

3 Intro to MEX-Files

For specific information on the default settings for the MATLAB supported
compilers, you can examine the options file in fullfile(matlabroot,
'bin', 'mexopts.sh'), or you can invoke the mex script in verbose mode
(-v). Verbose mode prints the exact compiler options, prelink commands (if
appropriate), and linker options used in the build process for each compiler.
“Custom Building on UNIX Systems” on page 3-47 gives an overview of the
high-level build process.

Files and Folders on UNIX Systems
This section describes the folder organization and purpose of the files
associated with the MATLAB C/C++ and Fortran API Reference on UNIX
systems.

����������

���

������

	
��

�������

���

��������

�������

���

��

�������

matlabroot/bin. Contains the following files for the MATLAB API:

mex
UNIX shell script that creates binary MEX-files from C/C++ or Fortran
MEX-file source code.

3-50

Custom Building MEX-Files

matlab
UNIX shell script that initializes your environment and then invokes
the MATLAB interpreter.

This folder also contains the preconfigured options files that the mex script
uses with particular compilers. For more information, see “Specifying a UNIX
Options File” on page 3-35.

matlabroot/bin/arch. Contains libraries, where arch specifies a particular
UNIX platform. On some UNIX platforms, this folder contains two versions
of this library. Library file names ending with .so or .dylib are shared
libraries.

matlabroot/extern/include. Contains the header files for developing
C/C++ and Fortran applications that interface with MATLAB. The relevant
header files for the MATLAB API are:

engine.h
C/C++ header file for MATLAB engine programs. Contains function
prototypes for engine routines.

mat.h
C/C++ header file for programs accessing MAT-files. Contains function
prototypes for mat routines.

matrix.h
C/C++ header file containing a definition of the mxArray structure and
function prototypes for matrix access routines.

mex.h
Header file for building C/C++ MEX-files. Contains function prototypes
for mex routines.

fintrf.h
Header file for building Fortran MEX-files. Contains function
prototypes for mex routines.

matlabroot/extern/src. Contains C source files to support MEX-file
features such as argument checking and versioning.

3-51

3 Intro to MEX-Files

Custom Building on Windows Systems
There are three stages to MEX-file building for both C/C++ and Fortran on
Windows systems: compiling, prelinking, and linking.

Compile Stage on Windows Systems
For the compile stage, a mex options file must

• Set up paths to the compiler using the COMPILER (for example, Watcom),
PATH, INCLUDE, and LIB environment variables. If your compiler always has
the environment variables set (e.g., in AUTOEXEC.BAT), you can comment
them out in the options file.

• Define the name of the compiler, using the COMPILER environment variable,
if needed.

• Define the compiler switches in the COMPFLAGS environment variable:

- The switch to create a DLL is required for MEX-files.

- For standalone programs, the switch to create an exe is required.

- The -c switch (compile only; do not link) is recommended.

- The switch to specify 8-byte alignment.

- You can use any other switch specific to the environment.

• Define preprocessor macro, with -D, MATLAB_MEX_FILE is required.

• Set up optimizer switches and/or debug switches using OPTIMFLAGS and
DEBUGFLAGS.

- If you build in optimization mode (the default), the mex script includes
the OPTIMFLAGS option in the compile stage.

- If you build in debug mode, the mex script includes the DEBUGFLAGS
options in the compile stage. It does not include the OPTIMFLAGS option.

- You can include both sets of options by specifying both the optimization
and debugging flags to the mex script (OPTIMFLAGS and DEBUGFLAGS,
respectively).

3-52

Custom Building MEX-Files

Prelink Stage on Windows Systems
The prelink stage dynamically creates import libraries to import the required
function into the MEX, MAT, or engine file:

• All MEX-files link against libmex.dll (MEX library).

• MAT standalone programs link against libmx.dll (array access library)
and libmat.dll (MAT-functions).

• Engine standalone programs link against libmx.dll (array access library)
and libeng.dll for engine functions.

Link Stage on Windows Systems
For the link stage, a mex options file must

• Define the name of the linker in the LINKER environment variable.

• Define the LINKFLAGS environment variable that must contain

- The switch to create a shared library for MEX-files, or the switch to
create an exe for standalone programs.

- Export of the entry point to the MEX-file as mexFunction for C/C++ or
MEXFUNCTION for Fortran.

- The import library (or libraries) created in the PRELINK_CMDS stage.

- You can use any other link switch specific to the compiler.

• Set up the linking optimization and debugging switches LINKOPTIMFLAGS
and LINKDEBUGFLAGS. Use the same conditions described in the “Compile
Stage on Windows Systems” on page 3-52.

• Define the link-file identifier in the LINK_FILE environment variable, if
necessary. For example, Watcom uses file to identify that the name
following is a file and not a command.

• Define the link-library identifier in the LINK_LIB environment variable,
if necessary. For example, Watcom uses library to identify the name
following is a library and not a command.

• Optionally, set up an output identifier and name with the output switch
in the NAME_OUTPUT environment variable. The environment variable
MEX_NAME contains the name of the first program in the command line. This

3-53

3 Intro to MEX-Files

must be set for -output to work. If this environment is not set, the compiler
default is to use the name of the first program in the command line. Even if
this is set, you can override it by specifying the mex -output switch.

Linking DLL Files to Binary MEX-Files on Windows Systems
To link a DLL to a MEX-file, list the DLL’s .lib file on the command line.

Windows Default Options File
The default MEX options file is placed in your user profile folder after you
configure your system by running mex -setup. The mex script searches for an
options file called mexopts.bat in the following order:

• The location and options file specified with the mex -f switch

• The current folder

• The user profile folder (returned by the prefdir function)

mex uses the first occurrence of the options file it finds. If no options file
is found, mex searches your machine for a supported C/C++ compiler and
automatically configures itself to use that compiler. Also, during the
configuration process, it copies the compiler’s default options file to the user
profile folder. If multiple compilers are found, you are prompted to select
one.

On Windows systems, the options file is written in the Perl script language.

For specific information on the default settings for the MATLAB supported
compilers, you can examine the options file, mexopts.bat, or you can invoke
the mex script in verbose mode (-v). Verbose mode prints the exact compiler
options, prelink commands, if appropriate, and linker options used in the
build process for each compiler. “Custom Building on Windows Systems” on
page 3-52 gives an overview of the high-level build process.

3-54

Custom Building MEX-Files

The User Profile Folder. The Windows user profile folder contains
user-specific information such as desktop appearance, recently used files,
and Start menu items. The mex and mbuild utilities store their respective
options files, mexopts.bat and compopts.bat, which are created during the
-setup process, in a folder of your user profile folder, named Application
Data\MathWorks\MATLAB.

Files and Folders on Windows Systems
This section describes the folder organization and purpose of the files
associated with the MATLAB C/C++ and Fortran API Reference on Microsoft
Windows systems.

The following figure illustrates the folders in which the MATLAB API files
are located. In the illustration, matlabroot symbolizes the top-level folder
where MATLAB is installed on your system.

����������

���

�����

������ �������

�������

���

��������

�������

���

��

�������

3-55

3 Intro to MEX-Files

matlabroot\bin. Contains the mex.bat batch file that builds C/C++ and
Fortran files into binary MEX-files. Also contains mex.pl, which is a Perl
script used by mex.bat.

matlabroot\bin\arch\mexopts. Contains the preconfigured options files
that the mex script uses with particular compilers. For more information, see
“Specifying a Windows Options File” on page 3-32.

matlabroot\extern\include. Contains the header files for developing
C/C++ and Fortran applications that interface with MATLAB.

The relevant header files for the MATLAB API (MEX-files, engine, and
MAT-files) are

engine.h
C/C++ header file for MATLAB engine programs. Contains function
prototypes for engine routines.

mat.h
C/C++ header file for programs accessing MAT-files. Contains function
prototypes for mat routines.

matrix.h
C/C++ header file containing a definition of the mxArray structure and
function prototypes for matrix access routines.

mex.h
Header file for building C/C++ MEX-files. Contains function prototypes
for mex routines.

fintrf.h
Header file for building Fortran MEX-files. Contains function
prototypes for mex routines.

*.def
Files used by Microsoft Visual C++ and Microsoft Fortran compilers.

matlabroot \extern\src. Contains files used for debugging MEX-files.

3-56

Custom Building MEX-Files

Compiling MEX-Files with the Microsoft Visual C++ IDE

Note This section provides information on how to compile source MEX-files
in the Microsoft Visual C++ IDE. It is not totally inclusive. This section
assumes that you know how to use the IDE. If you need more information on
using the Microsoft Visual C++ IDE, refer to the corresponding Microsoft
documentation.

To build MEX-files with the Microsoft Visual C++ integrated development
environment:

1 Create a project and insert your MEX source files.

2 Create a .def file to export the MEX entry point. On the Project menu,
click Add New Item and select Module-Definition File (.def). For
example:

LIBRARY MYFILE
EXPORTS mexFunction <-- for a C MEX-file

or
EXPORTS _MEXFUNCTION <-- for a Fortran MEX-file

3 On the Projectmenu, click Properties for the project to open the property
pages.

4 Under C/C++ General properties, add the MATLAB include folder,
matlab\extern\include, as an additional include folder.

5 Under C/C++ Preprocessor properties, add MATLAB_MEX_FILE as a
preprocessor definition.

6 Under Linker General properties, change the output file extension to
.mexw32 if you are building for a 32–bit platform or .mexw64 if you are
building for a 64–bit platform.

7 Locate the .lib files for the compiler you are using
under matlabroot\extern\lib\win32\microsoft or
matlabroot\extern\lib\win64\microsoft. Under Linker
Input properties, add libmx.lib, libmex.lib, and libmat.lib as
additional dependencies.

3-57

3 Intro to MEX-Files

8 Under Linker Input properties, add the module definition (.def) file
you created.

9 Under Linker Debugging properties, if you intend to debug the
MEX-file using the IDE, specify that the build should generate debugging
information. For more information about debugging, see “Debugging on
the Microsoft Windows Platforms” on page 4-32.

If you are using a compiler other than the Microsoft Visual C++ compiler,
the process for building MEX files is like that described above. In step
4, locate the .lib files for the compiler you are using in a folder of
matlabroot\extern\lib\win32 or matlabroot\extern\lib\win64. For
example, if you are using an Open Watcom C/C++ compiler, look in
matlabroot\extern\lib\win32\watcom.

3-58

Call LAPACK and BLAS Functions

Call LAPACK and BLAS Functions

In this section...

“What You Need to Know” on page 3-59

“Creating a MEX-File Using LAPACK and BLAS Functions” on page 3-60

“Preserving Input Values from Modification” on page 3-62

“Passing Arguments to Fortran Functions from C/C++ Programs” on page
3-63

“Passing Arguments to Fortran Functions from Fortran Programs” on page
3-64

“Handling Complex Numbers in LAPACK and BLAS Functions” on page
3-65

“Modifying the Function Name on UNIX Systems” on page 3-69

What You Need to Know
You can call a LAPACK or BLAS function using a MEX-file. To create a
MEX-file, you need C/C++ or Fortran programming experience and the
software resources (compilers and linkers) to build an executable file. It also
is helpful to understand how to use Fortran subroutines. MATLAB provides
the mwlapack and mwblas libraries in matlabroot/extern/lib. To work with
complex numbers, use the conversion routines in the fort.c and fort.h files
in matlabroot/extern/examples/refbook. To help you get started, there
are source code examples in matlabroot/extern/examples/refbook.

If you do not know how to use MEX-files, start with the following sections:

• “MEX-Files Call C/C++ and Fortran Programs” on page 3-5

• “What You Need to Build MEX-Files” on page 3-27

For an overview showing how to create and build sample MEX-files, start
with the following sections:

• “Creating a Source MEX-File” on page 3-5

• “Overview of Building the timestwo MEX-File” on page 3-36

3-59

3 Intro to MEX-Files

Creating a MEX-File Using LAPACK and BLAS
Functions
To call LAPACK or BLAS functions:

1 Create a source MEX-file containing the mexFunction gateway routine,
as described in the following topics:

• “Gateway Routine” on page 4-2 for C/C++ language MEX-files.

• “Gateway Routine” on page 5-2 for Fortran language MEX-files.

2 Select a supported compiler for your platform, as described in the following
topics:

• “Selecting a Compiler on Windows Platforms” on page 3-28

• “Selecting a Compiler on UNIX Platforms” on page 3-33.

3 Build a binary MEX-file using the mex command with one or more of the
following options:

• Link your source file to one or both of the libraries, mwlapack and mwblas.

• Use the -largeArrayDims option; the mwlapack and mwblas libraries
only support 64-bit integers for matrix dimensions.

• If your function uses complex numbers, build your source file with
fort.c and include the fort.h header file.

The following topics show how to use the mex command using the example
matrixMultiply.c. To work with this file, copy it to a local folder. For
example:

copyfile(fullfile(matlabroot, 'extern', 'examples', 'refbook', ...
'matrixMultiply.c'), fullfile('c:', 'work'));

The example files are read-only files. To modify an example, ensure the file
is writable by typing:

fileattrib('matrixMultiply.c','+w');

3-60

Call LAPACK and BLAS Functions

Building on Windows Platforms
There are compiler-specific versions of the libraries on the Windows platform.
To link to a specific library, look at the matlabroot/extern/lib/ folder and
choose the path for your architecture and compiler. For example, type:

cc = mex.getCompilerConfigurations('Any','Selected');
cc.Manufacturer
computer

If you selected a Microsoft C/C++ compiler on a 32-bit platform, MATLAB
displays:

ans =
Microsoft
ans =
PCWIN

Link to the libraries in matlabroot/extern/lib/win32/microsoft/. To
simplify the build command, create variables lapacklib and blaslib, which
identify the full path and file name of each library.

lapacklib = fullfile(matlabroot, ...
'extern', 'lib', 'win32', 'microsoft', 'libmwlapack.lib');

blaslib = fullfile(matlabroot, ...
'extern', 'lib', 'win32', 'microsoft', 'libmwblas.lib');

When you use a variable to identify the library, you must use the function
syntax of the mex command. (For more information, see “Command vs.
Function Syntax”.) To build matrixMultiply.c, which uses functions from
the BLAS library, type:

mex('-v', '-largeArrayDims', 'matrixMultiply.c', blaslib)

To build a MEX-file with functions that use complex numbers, see “Handling
Complex Numbers in LAPACK and BLAS Functions” on page 3-65.

Building on UNIX Platforms
To build the MEX-file matrixMultiply.c, which uses functions from the
BLAS library, type:

3-61

3 Intro to MEX-Files

mex -v -largeArrayDims matrixMultiply.c -lmwblas

To build a MEX-file with functions that use complex numbers, see “Handling
Complex Numbers in LAPACK and BLAS Functions” on page 3-65.

Testing the matrixMultiply MEX-File
To run the matrixMultiply MEX-file, type:

A = [1 3 5; 2 4 7];
B = [-5 8 11; 3 9 21; 4 0 8];
X = matrixMultiply(A,B)

MATLAB displays:

X =
24 35 114
30 52 162

Preserving Input Values from Modification
Many LAPACK and BLAS functions modify the values of arguments passed
to them. It is good practice to make a copy of arguments you can modify
before passing them to these functions. For information about how MATLAB
handles arguments to the mexFunction, see “Managing Input and Output
Parameters” on page 3-12.

Example — matrixDivide.c
The following example calls the LAPACK function dgesv that modifies its
input arguments. The code in this example makes copies of prhs[0] and
prhs[1], and passes the copies to dgesv to preserve the contents of the input
arguments.

To see the example, open the file in the MATLAB Editor. To create the
MEX-file, copy the source file to a working folder:

copyfile(fullfile(matlabroot, 'extern', 'examples', 'refbook', ...
'matrixDivide.c'), fullfile('c:', 'work'));

To build the file on Windows, type:

3-62

Call LAPACK and BLAS Functions

lapacklib = fullfile(matlabroot, ...
'extern', 'lib', 'win32', 'microsoft', 'libmwlapack.lib');

mex('-v', '-largeArrayDims', 'matrixDivide.c', lapacklib)

To build the file on UNIX type:

mex -v -largeArrayDims matrixDivide.c -lmwlapack

To test, type:

A = [1 2; 3 4];
B = [5; 6];
X = matrixDivide(A,B)

MATLAB displays:

X =
-4.0000
4.5000

Passing Arguments to Fortran Functions from C/C++
Programs
The LAPACK and BLAS functions are written in Fortran. Be aware that
C/C++ and Fortran use different conventions for passing arguments to and
from functions. Fortran functions expect the arguments to be passed by
reference, while arguments to C/C++ functions are passed by value. When
you pass by value, you pass a copy of the value. When you pass by reference,
you pass a pointer to the value. A reference is also the address of the value.

When you call a Fortran subroutine, like a function from LAPACK or BLAS,
from a C/C++ program, be sure to pass the arguments by reference. To do
this, precede the argument with an ampersand (&), unless that argument
is already a reference. For example, when you create a matrix using the
mxGetPr function, you create a reference to the matrix and do not need the
ampersand before the argument.

In the following code snippet, variables m, n, p, one, and zero need the &
character to make them a reference. Variables A, B, C, and chn are pointers,
which are references.

/* pointers to input & output matrices*/

3-63

3 Intro to MEX-Files

double *A, *B, *C;
/* matrix dimensions */
mwSignedIndex m,n,p;
/* other inputs to dgemm */
char *chn = "N";
double one = 1.0, zero = 0.0;

/* call BLAS function */
dgemm(chn, chn, &m, &n, &p, &one, A, &m, B, &p, &zero, C, &m);

Example — matrixMultiply.c
The matrixMultiply.c example calls dgemm, passing all arguments by
reference. To see the source code, open the file in the MATLAB Editor. To
build and run this example, see “Creating a MEX-File Using LAPACK and
BLAS Functions” on page 3-60.

Passing Arguments to Fortran Functions from Fortran
Programs
You can call LAPACK and BLAS functions from Fortran MEX files. The
following example takes two matrices and multiplies them by calling the
BLAS routine dgemm:

#include "fintrf.h"

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
mwPointer plhs(*), prhs(*)
integer nlhs, nrhs
mwPointer mxcreatedoublematrix
mwPointer mxgetpr
mwPointer A, B, C
mwSignedIndex mxgetm, mxgetn
mwSignedIndex m, n, p, numel
double precision one, zero, ar, br
character ch1, ch2

ch1 = 'N'
ch2 = 'N'

3-64

Call LAPACK and BLAS Functions

one = 1.0
zero = 0.0

A = mxgetpr(prhs(1))
B = mxgetpr(prhs(2))
m = mxgetm(prhs(1))
p = mxgetn(prhs(1))
n = mxgetn(prhs(2))

plhs(1) = mxcreatedoublematrix(m, n, 0.0)
C = mxgetpr(plhs(1))
numel = 1
call mxcopyptrtoreal8(A, ar, numel)
call mxcopyptrtoreal8(B, br, numel)

call dgemm(ch1, ch2, m, n, p, one, %val(A), m,
+ %val(B), p, zero, %val(C), m)

return
end

Handling Complex Numbers in LAPACK and BLAS
Functions
MATLAB stores complex numbers differently than Fortran. MATLAB stores
the real and imaginary parts of a complex number in separate, equal length
vectors, pr and pi. Fortran stores the same complex number in one location
with the real and imaginary parts interleaved.

As a result, complex variables exchanged between MATLAB and a Fortran
function are incompatible. Use the conversion routines, mat2fort and
fort2mat, that change the storage format of complex numbers to address
this incompatibility.

• mat2fort— Convert MATLAB complex matrix to Fortran complex storage.

• fort2mat — Convert Fortran complex storage to MATLAB real and
imaginary parts.

3-65

3 Intro to MEX-Files

The fort.c and fort.h files provide routines for conversion between
MATLAB and Fortran complex data structures. These files define the
mat2fort and fort2mat routines.

To use these routines, you need to:

1 Include the fort.h header file in your source file, using the statement
#include "fort.h".

2 Link the fort.c file with your program. Specify the full path,
matlabroot/extern/examples/refbook for fort.c in the build command.

3 Use the -Ipathname switch to indicate the header file. Specify the full path,
matlabroot/extern/examples/refbook for fort.h in the build command.

4 When you specify the full path, replace the term matlabroot with the
actual folder name.

Handling Complex Number Input Values
It is unnecessary to copy arguments for functions that use complex number
input values. The mat2fort conversion routine creates a copy of the
arguments for you. For information, see “Preserving Input Values from
Modification” on page 3-62.

Handling Complex Number Output Arguments
For complex variables returned by a Fortran function, do the following:

1 When allocating storage for the variable, allocate a real variable with twice
as much space as you would for a variable of the same size. Do this because
the returned variable uses the Fortran format, which takes twice the space.
See the allocation of zout in the example.

2 Use the fort2mat function to make the variable compatible with MATLAB.

Example — Passing Complex Variables
This example shows how to call a function, passing complex prhs[0] as input
and receiving complex plhs[0] as output. Temporary variables zin and zout
contain the input and output values in Fortran format. To see the example,

3-66

Call LAPACK and BLAS Functions

open the file in the MATLAB Editor. To create the MEX-file, copy the source
file to a working folder:

copyfile(fullfile(matlabroot, 'extern', 'examples', 'refbook', ...
'matrixDivideComplex.c'), fullfile('c:', 'work'));

To build the file on a Windows platform, type:

lapacklib = fullfile(matlabroot, ...
'extern', 'lib', 'win32', 'microsoft', 'libmwlapack.lib');

fortfile = fullfile(matlabroot, 'extern', 'examples', ...
'refbook', 'fort.c');

fortheaderdir = fullfile(matlabroot, 'extern', 'examples', ...
'refbook');

mex('-v', '-largeArrayDims', ['-I' fortheaderdir], ...
'matrixDivideComplex.c', fortfile, lapacklib)

To build on a UNIX platform, type:

fortfile = fullfile(matlabroot, 'extern', 'examples', ...
'refbook', 'fort.c');

fortheaderdir = fullfile(matlabroot, 'extern', 'examples', ...
'refbook');

mex('-v', '-largeArrayDims', ['-I' fortheaderdir], ...
'matrixDivideComplex.c', fortfile, '-lmwlapack')

To test:

Areal = [1 2; 3 4];
Aimag = [1 1; 0 0];
Breal = [5; 6];
Bimag = [0; 0];
Acomplex = complex(Areal,Aimag);
Bcomplex = complex(Breal,Bimag);
X = matrixDivideComplex(Acomplex,Bcomplex)

MATLAB displays:

X =
-4.4000 + 0.8000i
4.8000 - 0.6000i

3-67

3 Intro to MEX-Files

Example — Handling Fortran Complex Return Type
Some level 1 BLAS functions (for example, zdotu and zdotc) return a double
complex type, which the C language does not support. The following C
MEX-file, dotProductComplex.c, shows how to handle the Fortran complex
return type for function zdotu. To see the example, open the file in the
MATLAB Editor.

The calling syntax for a C program calling a Fortran function that returns
a value in an output argument is platform-dependent. On the Windows
platform, the return value needs to be passed in as the first input argument.
MATLAB provides a macro, FORTRAN_COMPLEX_FUNCTIONS_RETURN_VOID,
to handle these differences.

The dotProductComplex example computes the dot product X of each element
of two complex vectors A and B. The calling syntax is:

X = dotProductComplex(A,B)

where A and B are complex vectors of the same size and X is a complex scalar.

For example, to build the MEX-file on a Windows 32-bit platform as
dotProductComplex.mexw32, type:

blaslib = fullfile(matlabroot, ...
'extern', 'lib', 'win32', 'microsoft', 'libmwblas.lib');

fortfile = fullfile(matlabroot, 'extern', 'examples', ...
'refbook', 'fort.c');

fortheaderdir = fullfile(matlabroot, 'extern', 'examples', ...
'refbook');

mex('-v', '-largeArrayDims', ['-I' fortheaderdir], ...
'dotProductComplex.c', fortfile, blaslib)

To test, type;

a1 = [1+2i; 2+3i];
b1 = [-1+2i; -1+3i];
X = dotProductComplex(a1,b1)

3-68

Call LAPACK and BLAS Functions

MATLAB displays:

X =
-16.0000 + 3.0000i

Example — Symmetric Indefinite Factorization Using LAPACK
The example utdu_slv.c calls LAPACK functions zhesvx and dsysvx. To see
the example, open the file in the MATLAB Editor. To create the MEX-file,
copy the source file to a working folder:

copyfile(fullfile(matlabroot, 'extern', 'examples', 'refbook', ...
'utdu_slv.c'), fullfile('c:', 'work'));

To build the file on Windows, type:

lapacklib = fullfile(matlabroot, ...
'extern', 'lib', 'win32', 'microsoft', 'libmwlapack.lib');

fortheaderdir = fullfile(matlabroot, 'extern', 'examples', ...
'refbook');

mex('-v', '-largeArrayDims', ['-I' fortheaderdir], ...
'utdu_slv.c', fortfile, lapacklib)

To build on a UNIX platform, type:

mex -v -largeArrayDims utdu_slv.c -lmwlapack

Modifying the Function Name on UNIX Systems
Add an underscore character following the function name when calling
LAPACK or BLAS functions on a UNIX system. For example, to call dgemm,
use:

dgemm_(arg1, arg2, ..., argn);

Or add these lines to your source code:

#if !defined(_WIN32)
#define dgemm dgemm_
#endif

3-69

3 Intro to MEX-Files

Running MEX-Files with .DLL File Extensions on Windows
32-bit Platforms

A MEX-file is a shared library dynamically loaded at runtime. Shared
libraries are sometimes called .dll files, for dynamically-linked library.
MEX-files have a platform-dependent extension, which the mex function
automatically assigns.

On 32-bit Windows platforms, the extension is .mexw32. MATLAB has
supported .dll as a secondary MEX-file extension since Version 7.1 (R14SP3).
In Version 7.7 (R2008b), if you used the -output switch to create a MEX-file
with a .dll extension, MATLAB displayed a warning message that such
usage is being phased out.

In MATLAB Version 7.10 (R2010a), you can no longer create a MEX-file with
a .dll file extension. If you try to, MATLAB creates the MEX-file with the
proper extension and displays the following warning:

Warning: Output file was specified with file extension, ".dll", which

is not a proper MEX-file extension. The proper extension for

this platform, ".mexw32", will be used instead.

MATLAB continues to execute a MEX-file with a .dll extension, but future
versions of MATLAB will not support this extension.

3-70

Upgrade MEX-Files to Use 64-Bit API

Upgrade MEX-Files to Use 64-Bit API

In this section...

“MATLAB Support for 64-Bit Indexing” on page 3-71

“MEX Uses 32-Bit API by Default” on page 3-71

“What If I Do Not Upgrade?” on page 3-73

“How to Upgrade MEX-Files to Use the 64-Bit API” on page 3-75

MATLAB Support for 64-Bit Indexing
MATLAB Version 7.3 (R2006b) added support for 64-bit indexing. With
64-bit indexing, you can create variables with up to 248-1 elements on 64-bit
platforms. Before Version 7.3, the C/C++ and Fortran API Reference library
functions used int in C/C++ and INTEGER*4 in Fortran to represent array
dimensions. These types limit the size of an array to 32-bit integers. Simply
building and running MEX-files on a 64-bit platform does not guarantee you
access to the additional address space. You must update your MEX source
code to take advantage of this functionality.

The following changes to the MX Matrix Library support 64-bit indexing:

• New types, mwSize and mwIndex, enabling large-sized data.

• Updated MX Matrix Library functions use mwSize and mwIndex types
for inputs and outputs. These functions are called the 64-bit API or the
large-array-handling API.

• New -largeArrayDims flag for mex build command enabling use of the
64-bit API.

To help transition your MEX-files to the 64-bit API, MATLAB maintains
an interface, or compatibility layer. Use the -compatibleArrayDims flag to
build MEX-files with this interface.

MEX Uses 32-Bit API by Default
The mex command uses the -compatibleArrayDims flag (32-bit API) by
default. In a future version of MATLAB, the mex command will change to use

3-71

3 Intro to MEX-Files

the large-array-handling API. At that time, the -largeArrayDims option will
be the default. This topic describes how to upgrade your MEX-files now in
preparation for that transition.

Can I Run Existing Binary MEX-Files?
You can run existing binary MEX-files without upgrading the files for use
with the 64-bit API. However, unrelated incompatibilities that prevent
execution of an existing MEX-file can occur. If your MEX-file does not execute
properly, review the MEX Compatibility Considerations topics in the Release
Notes for this release. To find MEX topics, check the External Interfaces
section of the Compatibility Summary for MATLAB release notes table for
each relevant version.

Must I Update Source MEX-Files on 64-Bit Platforms?
If you build MEX-files on 64-bit platforms or write platform-independent
applications, you must upgrade your MEX-files when the default changes. To
upgrade, review your source code, make appropriate changes, and rebuild
using the mex command.

Previous versions of the External Interfaces Release Notes provide
instructions for updating your MEX-files. What action you take now depends
on whether your MEX-files currently use the 64-bit API. The following table
helps you identify your next actions.

State of Your Source Code Next Action

I do not plan to update my code. You have chosen to opt-out
and you must build using the
-compatibleArrayDims flag.

I want to update my code. Where do
I start?

See “How to Upgrade MEX-Files to
Use the 64-Bit API” on page 3-75.

I use MEX-files, but do not have
access to the source code.

Ask the owner of the source code to
follow the steps in “How to Upgrade
MEX-Files to Use the 64-Bit API” on
page 3-75.

3-72

Upgrade MEX-Files to Use 64-Bit API

State of Your Source Code Next Action

I use third-party libraries. Ask the vendor if the libraries
support 64-bit indexing. If not,
you cannot use these libraries
to create 64-bit MEX-files.
Build your MEX-file using the
-compatibleArrayDims flag.

If the libraries support 64-bit
indexing, review your source code,
following the steps in “How to
Upgrade MEX-Files to Use the
64-Bit API” on page 3-75, and then
test.

I updated my code in a previous
release.

Review your source code, following
the steps in “How to Upgrade
MEX-Files to Use the 64-Bit API” on
page 3-75, and then test.

Must I Update Source MEX-Files on 32-Bit Platforms?
There are no changes to building 32-bit MEX-files. However, in a future
version of MATLAB, the compatibility layer, with the -compatibleArrayDims
flag, might be unsupported and you then would need to upgrade your
MEX-files.

If you build MEX-files exclusively on 32-bit platforms, but want to write
platform-independent code, you still can upgrade your code. If possible, build
on a 64-bit system to validate your changes.

What If I Do Not Upgrade?
On 32-bit platforms, you do not need to make any changes to build MEX-files.

On 64-bit platforms, you can build MEX-files by using the
-compatibleArrayDims flag.

3-73

3 Intro to MEX-Files

On 64-bit platforms, if you do not update your source files and you build
without the -compatibleArrayDims flag, the results are unpredictable. One
or more of the following could occur:

• Increased compiler warnings and/or errors from your native compiler

• Run-time errors

• Wrong answers

3-74

Upgrade MEX-Files to Use 64-Bit API

How to Upgrade MEX-Files to Use the 64-Bit API
Use the following checklist to review and update MEX-file source code.

1 Prepare your code before editing — see “Back Up Files and Create Tests”
on page 3-76.

2 Iteratively change and test code.

Before building your MEX-files with the 64-bit API, refactor your existing
code by checking for the following conditions:

a “Update Variables” on page 3-76.

b “Replace Unsupported Functions” on page 3-79.

c If necessary, “Update Fortran Source Code” on page 3-81.

After each change, build and test your code:

• Build with the 32-bit API. For example, to build myMexFile.c, type:

mex -compatibleArrayDims myMexFile.c

• Test after each refactoring — see “Test, Debug, and Resolve Differences
After Each Refactoring Iteration” on page 3-80.

3 Compile using the 64-bit API. To build myMexFile.c, type:

mex -largeArrayDims myMexFile.c

4 Resolve failures and warnings — see “Resolve -largeArrayDims Build
Failures and Warnings” on page 3-80.

5 Compare Results — see “Execute 64-Bit MEX-File and Compare Results
with 32-Bit Version” on page 3-80.

6 Check memory — see “Experiment with Large Arrays” on page 3-81.

The following procedures use C/C++ terminology and example code. Fortran
MEX-files share the same issues, with additional tasks described in “Update
Fortran Source Code” on page 3-81.

3-75

3 Intro to MEX-Files

Back Up Files and Create Tests
Before adapting your code to handle large arrays, verify the MEX-file works
with the traditional 32-bit array dimensions. At a minimum, build a list
of expected inputs and outputs, or create a full test suite. Use these tests
to compare the results with the upgraded source code. The results should
be identical.

Back up all source, binary, and test files.

Update Variables
To handle large arrays, convert variables containing array indices or sizes to
use the mwSize and mwIndex types instead of the 32-bit int type. Review your
code to see if it contains the following types of variables:

• Variables used directly by the MX Matrix Library functions — see “Update
Arguments Used to Call Functions in the 64-Bit API” on page 3-76.

• Intermediate variables — see “Update Variables Used for Array Indices
and Sizes” on page 3-77.

• Variables used as both size/index values and as 32-bit integers — see
“Analyze Other Variables” on page 3-78.

Update Arguments Used to Call Functions in the 64-Bit API
Identify the 64-bit API functions in your code that use the mwSize / mwIndex
types. For the list of functions, see “Using the 64-Bit API” on page 4-43.
Search for the variables that you use to call the functions. Check the function
signature, shown under the Syntax heading on the function reference page.
The signature identifies the variables that take mwSize / mwIndex values as
input or output values. Change your variables to use the correct type.

For example, suppose your code uses the mxCreateDoubleMatrix function, as
shown in the following statements:

int nrows,ncolumns;
...
y_out = mxCreateDoubleMatrix(nrows, ncolumns, mxREAL);

To see the function signature, type:

3-76

Upgrade MEX-Files to Use 64-Bit API

doc mxCreateDoubleMatrix

The signature is:mxArray *mxCreateDoubleMatrix(mwSize m, mwSize n,
mxComplexity ComplexFlag)

The type for input arguments m and n is mwSize. Change your code as shown
in the table.

Replace: With:

int nrows,ncolumns; mwSize nrows,ncolumns;

Update Variables Used for Array Indices and Sizes
If your code uses intermediate variables to calculate size and index values,
use mwSize / mwIndex for these variables. For example, the following code
declares the inputs to mxCreateDoubleMatrix as type mwSize:

mwSize nrows,ncolumns; /* inputs to mxCreateDoubleMatrix */
int numDataPoints;
nrows = 3;
numDataPoints = nrows * 2;
ncolumns = numDataPoints + 1;
...
y_out = mxCreateDoubleMatrix(nrows, ncolumns, mxREAL);

This example uses the intermediate variable, numDataPoints (of type int), to
calculate the value of ncolumns. If you copy a 64-bit value from nrows into the
32-bit variable, numDataPoints, the resulting value truncates. Your MEX-file
could crash or produce incorrect results. Use type mwSize for numDataPoints,
as shown in the following table.

Replace: With:

int numDataPoints; mwSize numDataPoints;

3-77

3 Intro to MEX-Files

Analyze Other Variables
You do not need to change every integer variable in your code. For example,
field numbers in structures and status codes are of type int. However, you
need to identify variables used for multiple purposes and, if necessary, replace
them with multiple variables.

The following example creates a matrix, myNumeric, and a structure,
myStruct, based on the number of sensors. The code uses one variable,
numSensors, for both the size of the array and the number of fields in the
structure.

mxArray *myNumeric, *myStruct;
int numSensors;
mwSize m, n;
char **fieldnames;
...
myNumeric = mxCreateDoubleMatrix(numSensors, n, mxREAL);
myStruct = mxCreateStructMatrix(m, n, numSensors, fieldnames);

The function signatures for mxCreateDoubleMatrix and
mxCreateStructMatrix are:

mxArray *mxCreateDoubleMatrix(mwSize m, mwSize n,
mxComplexity ComplexFlag)

mxArray *mxCreateStructMatrix(mwSize m, mwSize n,
int nfields, const char **fieldnames);

For the mxCreateDoubleMatrix function, your code uses numSensors for
the variable m. The type for m is mwSize. For the mxCreateStructMatrix
function, your code uses numSensors for the variable nfields. The type for
nfields is int. Replace numSensors with two new variables to properly handle
both functions, as shown in the following table.

3-78

Upgrade MEX-Files to Use 64-Bit API

Replace: With:

int numSensors; /* create 2 variables */
/* of different types */
mwSize numSensorSize;
int numSensorFields;

myNumeric =
mxCreateDoubleMatrix(
numSensors,
n, mxREAL);

/* use mwSize variable */
/* numSensorSize */
myNumeric =

mxCreateDoubleMatrix(
numSensorSize,
n, mxREAL);

myStruct =
mxCreateStructMatrix(
m, n,
numSensors,
fieldnames);

/* use int variable */
/* numSensorFields */
myStruct =

mxCreateStructMatrix(
m, n,
numSensorFields,
fieldnames);

Replace Unsupported Functions
While updating older MEX-files, you could find calls to unsupported
functions, such as mxCreateFull, mxGetName, or mxIsString. MATLAB
removed support for these functions in Version 7.1 (R14SP3). You cannot
use unsupported functions with 64-bit array dimensions. For the list of
unsupported functions and the recommended replacements, see “Obsolete
Functions No Longer Documented”.

Update your code to use an equivalent function, if available. For example, use
mxCreateDoubleMatrix instead of mxCreateFull.

3-79

3 Intro to MEX-Files

Test, Debug, and Resolve Differences After Each Refactoring
Iteration
To build myMexFile.c with the 32-bit API, type:

mex -compatibleArrayDims myMexFile.c

Use the tests you created at the beginning of this process to compare
the results of your updated MEX-file with your original binary file. Both
MEX-files should return identical results. If not, debug and resolve any
differences. Differences are easier to resolve now than when you build using
the 64-bit API.

Resolve -largeArrayDims Build Failures and Warnings
After reviewing and updating your code, compile your MEX-file using the
large array handling API. To build myMexFile.c with the 64-bit API, type:

mex -largeArrayDims myMexFile.c

Since the mwSize / mwIndex types are MATLAB types, your compiler
sometimes refers to them as size_t, unsigned_int64, or by other similar
names.

Most build problems are related to type mismatches between 32- and 64-bit
types. Step 5 in the Technical Support solution 1-5C27B9 identifies common
build problems for specific compilers, and possible solutions.

Execute 64-Bit MEX-File and Compare Results with 32-Bit
Version
Compare the results of running your MEX-file compiled with the 64-bit API
with the results from your original binary. If there are any differences or
failures, use a debugger to investigate the cause. For information on the
capabilities of your debugger, refer to your compiler documentation.

Step 6 in the Technical Support solution 1-5C27B9 identifies issues you might
encounter when running your MEX-files, and possible solutions.

After you resolve any issues and upgrade your MEX-file, it replicates the
functionality of your original code while using the large array handling API.

3-80

http://www.mathworks.com/support/solutions/data/1-5C27B9.html?solution=1-5C27B9
http://www.mathworks.com/support/solutions/data/1-5C27B9.html?solution=1-5C27B9

Upgrade MEX-Files to Use 64-Bit API

Experiment with Large Arrays
If you have access to a machine with large amounts of memory, you can
experiment with large arrays. An array of double-precision floating- point
numbers (the default in MATLAB) with 232 elements takes approximately
32 GB of memory.

For an example that demonstrates the use of large arrays, see the
arraySize.c MEX-file in “Handling Large mxArrays” on page 4-43.

Update Fortran Source Code
All of the previous information applies to Fortran, as well as C/C++.
Fortran uses similar API signatures, identical mwSize / mwIndex types, and
similar compilers and debuggers. To make your Fortran source code 64-bit
compatible, perform these additional tasks:

• “Use Fortran API Header File” on page 3-81

• “Declare Fortran Pointers” on page 3-81

• “Require Fortran Type Declarations” on page 3-82

• “Use Variables in Function Calls” on page 3-82

• “Manage Reduced Fortran Compiler Warnings” on page 3-83

Use Fortran API Header File. To make your Fortran MEX-file compatible
with the 64-bit API, use the fintrf.h header file in your Fortran source
files. Name your source files with an uppercase .F file extension. For more
information about these requirements, see “The Components of a Fortran
MEX-File” on page 5-2.

Declare Fortran Pointers. Pointers need to be 32- or 64-bit addresses based
on machine type. This requirement is not directly tied to array dimensions,
but you could encounter problems when moving 32-bit code to 64-bit machines
as part of this conversion.

For more information, see “Preprocessor Macros” on page 5-5 and the
mwPointer reference page.

3-81

3 Intro to MEX-Files

The C/C++ compiler automatically handles pointer size. In Fortran,
MATLAB uses the mwPointer type to handle this difference. For example,
mxCreateDoubleMatrix returns an mwPointer:

mwPointer mxCreateDoubleMatrix(m, n, ComplexFlag)
mwSize m, n
integer*4 ComplexFlag

Require Fortran Type Declarations. Fortran uses implicit type definitions.
This means undeclared variables starting with letters I through N are
implicitly declared type INTEGER. Variable names starting with other letters
are implicitly declared type REAL*4. Using the implicit INTEGER type could
work for 32-bit indices, but is not safe for large array dimension MEX-files.
Add the IMPLICIT NONE statement to your Fortran subroutines to force you to
declare all variables. For example:

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
implicit none

This statement helps identify 32-bit integers in your code that do not have
explicit type declarations. Then, you can declare them as INTEGER*4 or
mwSize / mwIndex, as appropriate. For more information on IMPLICIT NONE,
refer to your Fortran compiler documentation.

Use Variables in Function Calls. If you use a number as an argument to a
function, your Fortran compiler could assign the argument an incorrect type.
On a 64-bit platform, an incorrect types can produce Out of Memory errors,
segmentation violations, or incorrect results. For example, definitions for the
argument types for the mxCreateDoubleMatrix function are:

mwPointer mxCreateDoubleMatrix(m, n, ComplexFlag)
mwSize m, n
integer*4 ComplexFlag

Suppose you have a C/C++ MEX-file with the following statement:

myArray = mxCreateDoubleMatrix(2, 3, mxREAL);

Most C/C++ compilers interpret the number 2 as a 64-bit value. Some Fortran
compilers cannot detect this requirement, and supply a 32-bit value. For
example, an equivalent Fortran statement is:

3-82

Upgrade MEX-Files to Use 64-Bit API

myArray = mxCreateDoubleMatrix(2, 3, 0)

The compiler interprets the value of the ComplexFlag argument 0 correctly as
type INTEGER*4. However, the compiler could interpret the argument 2 as a
32-bit value, even though the argument m is declared type mwSize.

A compiler-independent solution to this problem is to declare and use an
mwSize / mwIndex variable instead of a literal value. For example, the
following statements unambiguously call the mxCreateDoubleMatrix function
in Fortran:

mwSize nrows, ncols
INTEGER*4 flag
nrows = 2
ncols = 3
flag = 0
myArray = mxCreateDoubleMatrix(nrows, ncols, flag)

Manage Reduced Fortran Compiler Warnings. Some Fortran compilers
cannot detect as many type mismatches as similar C/C++ compilers. This
inability can complicate the step “Resolve -largeArrayDims Build Failures
and Warnings” on page 3-80 by leaving more issues to find with your debugger
in the step “Execute 64-Bit MEX-File and Compare Results with 32-Bit
Version” on page 3-80.

3-83

3 Intro to MEX-Files

Platform Compatibility

In this section...

“Verify the MEX-File Is Built For Your Platform” on page 3-84

“Verify Your Architecture on Windows Platforms” on page 3-84

Verify the MEX-File Is Built For Your Platform
If you obtain a binary MEX-file from another source, be sure the file was
compiled for the same platform on which you want to run it. The file extension
reflects the platform, as shown in the following table. To determine the
extension for your platform, use the mexext function.

Binary MEX-File Extensions

Platform Binary MEX-File Extension

Linux (64-bit) mexa64

Apple Macintosh
(64-bit)

mexmaci64

Microsoft Windows
(32-bit)

mexw32

Windows (64-bit) mexw64

Verify Your Architecture on Windows Platforms
Verify the MEX-file is for the same platform, 32- vs. 64-bit.

3-84

Invalid MEX-File Error

Invalid MEX-File Error

MATLAB Version Incompatibility
When you try to run a binary MEX-file from a version of MATLAB that is
different from the version that created the MEX-file, MATLAB displays an
error message of the following form:

Invalid MEX-file <mexfilename>:
The specified module could not be found.

DLL Files Not on Path on Windows Systems
MATLAB fails to load binary MEX-files if it cannot find all .dll files
referenced by the MEX-file; the .dll files must be on the DOS path or in the
same folder as the MEX-file. This is also true for third-party .dll files.

When this happens, MATLAB displays an error message of the following form:

Invalid MEX-file <mexfilename>:
The specified module could not be found.

On Windows systems, to find library dependencies, use the third-party
product Dependency Walker. Dependency Walker is a free utility that scans
any 32-bit or 64-bit Windows module and builds a hierarchical tree diagram
of all dependent modules. For each module found, it lists all the functions
that are exported by that module, and which of those functions are called by
other modules. Download the Dependency Walker utility from the following
Web site:

http://www.dependencywalker.com/

See the Technical Support solution 1-2RQL4L at
http://www.mathworks.com/support/solutions/data/1-2RQL4L.html for
information on using the Dependency Walker.

3-85

http://www.dependencywalker.com/

http://www.mathworks.com/support/solutions/data/1-2RQL4L.html

3 Intro to MEX-Files

Before You Run a MEX-File You Receive from Someone Else
A MEX-file is a function, created in MATLAB, that calls C, C++, or Fortran
subroutines. To call a MEX-file, use the name of the file, without the file
extension. The file must be on your MATLAB path.

If you cannot run a MEX-file that you did not create, consider the following:

• “Platform Compatibility” on page 3-84

• “Version Compatibility” on page 3-87

• Install the compiler used to create the MEX-file.

• If the MEX-file uses specialized runtime libraries, those libraries must be
installed on your system. For troubleshooting information, see “DLL Files
Not on Path on Windows Systems” on page 3-85.

A MEX-file is a dynamically-linked subroutine that the MATLAB interpreter
loads and executes when you call the function. Dynamic linking means
that when you call the function, the program looks for dependent libraries.
MEX-files use MATLAB runtime libraries and language-specific libraries. A
MEX-file might also use specialized runtime libraries. The code for these
libraries is not included in the MEX-file; the libraries must be present on your
computer when you run the MEX-file.

If you write a MEX-file, build it, and then execute it in the same MATLAB
session, all of the dependent libraries are available, as expected. However, if
you receive a MEX-file from another MATLAB user, you might not have all
of the dependent libraries.

3-86

Version Compatibility

Version Compatibility
For best results, your version of MATLAB must be the same version that was
used to create the MEX-file.

MEX-files use MATLAB runtime libraries. MEX-files are usually backwards
compatible, which means you can run a MEX-file that was created on an
earlier version of MATLAB on later versions of MATLAB. If the MEX-file
generates errors, recompile the MEX-file from the source code.

Sometimes a MEX-file created on a newer version of MATLAB runs on an
older version of MATLAB (forward compatibility), but this is not supported.

3-87

3 Intro to MEX-Files

Troubleshooting MEX-Files

Technical Support
http://www.mathworks.com/support/

3-88

http://www.mathworks.com/support/

Configuration Issues

Configuration Issues

In this section...

“Search Path Problem on Microsoft Windows Systems” on page 3-89

“MATLAB Path Names Containing Spaces on Windows Systems” on page
3-89

“Internal Error When Using mex -setup ()” on page 3-89

Search Path Problem on Microsoft Windows Systems
On Windows systems, if you move the MATLAB executable without
reinstalling the MATLAB software, you might need to modify mex.bat to
point to the new MATLAB location.

MATLAB Path Names Containing Spaces on Windows
Systems
If you have problems building MEX-files on Windows systems and there is a
space in any of the folder names within the MATLAB path, either reinstall
MATLAB into a path name that contains no spaces or rename the folder that
contains the space. For example, if you install MATLAB under the Program
Files folder, you might have difficulty building MEX-files with certain C/C++
compilers.

Internal Error When Using mex -setup ()
Some antivirus software packages might conflict with the mex -setup process
or other mex commands. If you get an error message of the following form in
response to a mex command:

mex.bat: internal error in sub get_compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and reenter the
command. After you have successfully run the mex script, you can reenable
your antivirus software.

3-89

3 Intro to MEX-Files

Alternatively, you can open a separate MS-DOS window and enter the mex
command from that window.

3-90

Understanding MEX-File Problems

Understanding MEX-File Problems
Use the following figure to help isolate common problems that occur when
creating binary MEX-files.

�����
���	
�����	�������
����
��������
��	������������
����
��������
��

����

������	
����
��������	�
�������������
�����������

������	
	
�����	�������

����
����

�
������
��������
����
�
��	�
���������	��

����������
�����
��������� �������

����������
� �!�������
"�������������#������

$�	���%��������	�
����
�	���
�������
�&��
�����	������
�	���
��
���' !(�)���*
���+,��

������	
����
�����	�
��������

����-�&��.
�������	��-/(%�
���

���������
��
��	�����

�	�������

$����	����
�����
������+���

0	��
�����	�����

'��
���!�����
�������"�#����������

����'��
�������"�#����������
����"����#���

�� ��

��

��

��

�� ��

��

��

��

�� ��

�

�

�

� �

Troubleshooting MEX-File Creation Problems

3-91

3 Intro to MEX-Files

In this section...

“Problem 1 — Compiling a Source MEX-File Fails” on page 3-92

“Problem 2 — Compiling Your Own Program Fails” on page 3-92

“Problem 3 — Binary MEX-File Load Errors” on page 3-93

“Problem 4 — Segmentation Fault” on page 3-94

“Problem 5 — Program Generates Incorrect Results” on page 3-94

Problems 1 through 5 refer to the corresponding numbered sections of the
previous flowchart. For additional suggestions on resolving MEX-file build
problems, see the MathWorks Technical Support Web site at:

http://www.mathworks.com/support

Problem 1 — Compiling a Source MEX-File Fails

Syntax Errors Compiling C/C++ MEX-Files on UNIX
The most common configuration problem in creating C/C++ source MEX-files
on UNIX systems involves using a non-ANSI C compiler, or failing to pass to
the compiler a flag that tells it to compile ANSI C code.

A reliable way of knowing if you have this type of configuration problem is
if the header files supplied by MATLAB generate a string of syntax errors
when you try to compile your code. See “Build MEX-Files” on page 3-27 for
information on selecting the appropriate options file or, if necessary, obtain
an ANSI C compiler.

Problem 2 — Compiling Your Own Program Fails
Mixing ANSI and non-ANSI C code can generate a string of syntax errors.
MATLAB provides header and source files that are ANSI C compliant.
Therefore, your C code must also be ANSI compliant.

Other common problems that can occur in any C/C++ program are neglecting
to include all necessary header files, or neglecting to link against all required
libraries.

3-92

http://www.mathworks.com/support

Understanding MEX-File Problems

Make sure you are using a MATLAB-supported compiler. See “What You Need
to Build MEX-Files” on page 3-27 for this information. Additional information
can be found in “Compiler- and Platform-Specific Issues” on page 3-96.

Symbol mexFunction Unresolved or Not Defined
Attempting to compile a MEX-function that does not include a gateway
function generates errors about the mexFunction symbol. For example, using
a C/C++ compiler, MATLAB displays information like:

LINK : error LNK2001: unresolved external symbol mexFunction

Using a Fortran compiler, MATLAB displays information like:

unresolved external symbol _MEXFUNCTION

If you want to call functions from a C/C++ or Fortran library from MATLAB,
you must write a gateway function, as described in “Create a Gateway
Routine” on page 3-6.

Problem 3 — Binary MEX-File Load Errors
If you receive an error of the form:

Unable to load mex file:
Invalid MEX-file

MATLAB does not recognize your MEX-file.

MATLAB loads MEX-files by looking for the gateway routine, mexFunction.
If you misspell the function name, MATLAB cannot load your MEX-file
and generates an error message. On Windows systems, check that you are
exporting mexFunction correctly.

On some platforms, if you fail to link against required libraries, you might get
an error when MATLAB loads your MEX-file rather than when you compile
your MEX-file. In such cases, a system error message referring to unresolved
symbols or unresolved references appears. Be sure to link against the library
that defines the function in question.

3-93

3 Intro to MEX-Files

On Windows systems, MATLAB fails to load MEX-files if it cannot find all
.dll files referenced by the MEX-file; the .dll files must be on the path or
in the same folder as the MEX-file. This is also true for third-party .dll
files. See “DLL Files Not on Path on Windows Systems” on page 3-85 for
information to diagnose this problem.

Problem 4 — Segmentation Fault
If a binary MEX-file causes a segmentation violation or assertion, it means
the MEX-file attempted to access protected, read-only, or unallocated memory.

These types of programming errors are sometimes difficult to track down.
Segmentation violations do not always occur at the same point as the logical
errors that cause them. If a program writes data to an unintended section of
memory, an error might not occur until the program reads and interprets the
corrupted data. Consequently, a segmentation violation can occur after the
MEX-file finishes executing.

One cause of memory corruption is to pass a null pointer to a function.
To check for this condition, add code in your MEX-file to check for invalid
arguments to MEX Library and MX Matrix Library API functions.

To troubleshoot problems of this nature, run MATLAB within a debugging
environment. For more information, see “Debug C/C++ Language MEX-Files”
on page 4-32 or “Debug Fortran Source MEX-Files” on page 5-24.

Problem 5 — Program Generates Incorrect Results
If your program generates the wrong answer(s), there are several causes.
First, there could be an error in the computational logic. Second, the program
could be reading from an uninitialized section of memory. For example,
reading the 11th element of a 10-element vector yields unpredictable results.

Another cause of generating a wrong answer could be overwriting valid data
due to memory mishandling. For example, writing to the 15th element of a
10-element vector might overwrite data in the adjacent variable in memory.
This case can be handled in a similar manner as segmentation violations,
as described in Problem 4.

3-94

Understanding MEX-File Problems

In all of these cases, you can use mexPrintf to examine data values at
intermediate stages or run MATLAB within a debugger to exploit all the
tools the debugger provides.

3-95

3 Intro to MEX-Files

Compiler- and Platform-Specific Issues

In this section...

“Linux gcc Compiler Version Error” on page 3-96

“Linux gcc -fPIC Errors” on page 3-96

“Watcom IDE Unresolved References” on page 3-96

Linux gcc Compiler Version Error
For information concerning a gcc compiler version error on Linux systems, see
the Technical Support solution 1-2H64MF.

Linux gcc -fPIC Errors
If you link a static library with a MEX-file, which is a shared library, you
might get an error message containing the text recompile with -fPIC.
Try compiling the static library with the -fPIC flag in order to create
position independent code. For information about using the gcc compiler, see
www.gnu.org. For an up-to-date list of supported compilers, see the Supported
and Compatible Compilers Web page.

Watcom IDE Unresolved References
If you use the Watcom IDE to create MEX-files and get unresolved
references to API functions when linking against our libraries, check the
argument-passing convention. The Watcom IDE uses a default switch that
passes parameters in registers. MATLAB requires that you pass parameters
on the stack.

3-96

http://www.mathworks.com/support/solutions/data/1-2H64MF.html
http://www.gnu.org/
http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

Memory Management Issues

Memory Management Issues

In this section...

“Overview” on page 3-97

“Improperly Destroying an mxArray” on page 3-98

“Incorrectly Constructing a Cell or Structure mxArray” on page 3-98

“Creating a Temporary mxArray with Improper Data” on page 3-99

“Creating Potential Memory Leaks” on page 3-100

“Improperly Destroying a Structure” on page 3-101

“Destroying Memory in a C++ Class Destructor” on page 3-102

Overview
When a binary MEX-file returns control to MATLAB, it returns the results
of its computations in the output arguments—the mxArrays contained in the
left-hand side arguments plhs[]. MATLAB destroys any mxArray created by
the MEX-file that is not in this argument list. In addition, MATLAB frees any
memory that was allocated in the MEX-file using the mxCalloc, mxMalloc, or
mxRealloc functions.

In general, MathWorks recommends that MEX-file functions destroy their
own temporary arrays and free their own dynamically allocated memory. It is
more efficient to perform this cleanup in the source MEX-file than to rely on
the automatic mechanism. This approach is consistent with other MATLAB
API applications (MAT-file applications, engine applications, and MATLAB
Compiler generated applications, which do not have any automatic cleanup
mechanism.)

However, you should not destroy an mxArray in a source MEX-file when it is:

• passed to the MEX-file in the right-hand side list prhs[]

• returned in the left-hand side list plhs[]

• returned by mexGetVariablePtr

• used to create a structure

3-97

3 Intro to MEX-Files

This section describes situations specific to memory management. We
recommend you review code in your source MEX-files to avoid using these
functions in the following situations. For additional information, see “Memory
Management” on page 4-47 in Creating C/C++ Language MEX-Files. For
guidance on memory issues, see “Strategies for Efficient Use of Memory”.

Potential memory management problems include:

Improperly Destroying an mxArray
Do not use mxFree to destroy an mxArray.

Example
In the following example, mxFree does not destroy the array object. This
operation frees the structure header associated with the array, but MATLAB
stills operates as if the array object needs to be destroyed. Thus MATLAB
tries to destroy the array object, and in the process, attempts to free its
structure header again:

mxArray *temp = mxCreateDoubleMatrix(1,1,mxREAL);
...

mxFree(temp); /* INCORRECT */

Solution
Call mxDestroyArray instead:

mxDestroyArray(temp); /* CORRECT */

Incorrectly Constructing a Cell or Structure mxArray
Do not call mxSetCell or mxSetField variants with prhs[] as the member
array.

Example
In the following example, when the MEX-file returns, MATLAB destroys the
entire cell array. Since this includes the members of the cell, this implicitly
destroys the MEX-file’s input arguments. This can cause several strange
results, generally having to do with the corruption of the caller’s workspace,

3-98

Memory Management Issues

if the right-hand side argument used is a temporary array (for example, a
literal or the result of an expression):

myfunction('hello')
/* myfunction is the name of your MEX-file and your code
/* contains the following: */

mxArray *temp = mxCreateCellMatrix(1,1);
...

mxSetCell(temp, 0, prhs[0]); /* INCORRECT */

Solution
Make a copy of the right-hand side argument with mxDuplicateArray and
use that copy as the argument to mxSetCell (or mxSetField variants). For
example:

mxSetCell(temp, 0, mxDuplicateArray(prhs[0])); /* CORRECT */

Creating a Temporary mxArray with Improper Data
Do not call mxDestroyArray on an mxArray whose data was not allocated by
an API routine.

Example
If you call mxSetPr, mxSetPi, mxSetData, or mxSetImagData, specifying
memory that was not allocated by mxCalloc, mxMalloc, or mxRealloc as the
intended data block (second argument), then when the MEX-file returns,
MATLAB attempts to free the pointers to real data and imaginary data (if
any). Thus MATLAB attempts to free memory, in this example, from the
program stack:

mxArray *temp = mxCreateDoubleMatrix(0,0,mxREAL);
double data[5] = {1,2,3,4,5};

...
mxSetM(temp,1); mxSetN(temp,5); mxSetPr(temp, data);
/* INCORRECT */

3-99

3 Intro to MEX-Files

Solution
Rather than use mxSetPr to set the data pointer, instead, create the mxArray
with the right size and use memcpy to copy the stack data into the buffer
returned by mxGetPr:

mxArray *temp = mxCreateDoubleMatrix(1,5,mxREAL);
double data[5] = {1,2,3,4,5};

...
memcpy(mxGetPr(temp), data, 5*sizeof(double)); /* CORRECT */

Creating Potential Memory Leaks
Prior to Version 5.2, if you created an mxArray using one of the API creation
routines and then you overwrote the pointer to the data using mxSetPr,
MATLAB still freed the original memory. This is no longer the case.

For example:

pr = mxCalloc(5*5, sizeof(double));
... <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxSetPr(plhs[0], pr); /* INCORRECT */

will now leak 5*5*8 bytes of memory, where 8 bytes is the size of a double.

You can avoid that memory leak by changing the code to:

plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
pr = mxGetPr(plhs[0]);
... <load data into pr>

or alternatively:

pr = mxCalloc(5*5, sizeof(double));
... <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxFree(mxGetPr(plhs[0]));
mxSetPr(plhs[0], pr);

Note that the first solution is more efficient.

3-100

Memory Management Issues

Similar memory leaks can also occur when using mxSetPi, mxSetData,
mxSetImagData, mxSetIr, or mxSetJc. You can avoid memory leaks by
changing the code as described in this section.

Improperly Destroying a Structure
For a structure, you must call mxDestroyArray only on the structure, not
on the field data arrays. A field in the structure points to the data in the
array used by mxSetField or mxSetFieldByNumber. When mxDestroyArray
destroys the structure, it attempts to traverse down through itself and
free all other data, including the memory in the data arrays. If you call
mxDestroyArray on each data array, the same memory is freed twice and this
can corrupt memory.

Example
The following example creates three arrays: one structure array aStruct
and two data arrays, myDataOne and myDataTwo. Field name one contains a
pointer to the data in myDataOne, and field name two contains a pointer to
the data in myDataTwo.

mxArray *myDataOne;
mxArray *myDataTwo;
mxArray *aStruct;
const char *fields[] = { "one", "two" };

myDataOne = mxCreateDoubleScalar(1.0);
myDataTwo = mxCreateDoubleScalar(2.0);

aStruct = mxCreateStructMatrix(1,1,2,fields);
mxSetField(aStruct, 0, "one", myDataOne);
mxSetField(aStruct, 1, "two", myDataTwo);
mxDestroyArray(myDataOne);
mxDestroyArray(myDataTwo);
mxDestroyArray(aStruct); /* tries to free myDataOne and myDataTwo */

Solution
The command mxDestroyArray(aStruct) destroys the data in all three
arrays:

3-101

3 Intro to MEX-Files

...
aStruct = mxCreateStructMatrix(1,1,2,fields);
mxSetField(aStruct, 0, "one", myDataOne);
mxSetField(aStruct, 1, "two", myDataTwo);
mxDestroyArray(aStruct);

Destroying Memory in a C++ Class Destructor
Do not use the mxFree or mxDestroyArray functions in a C++ destructor
of a class used in a MEX-function. If the MEX-function throws an error,
MATLAB cleans up MEX-file variables, as described in “Automatic Cleanup
of Temporary Arrays” on page 4-47.

If an error occurs that causes the object to go out of scope, MATLAB calls
the C++ destructor. Freeing memory directly in the destructor means both
MATLAB and the destructor free the same memory, which can corrupt
memory.

3-102

Compiler Errors in Fortran MEX-Files

Compiler Errors in Fortran MEX-Files
When you compile a Fortran MEX-file using a free source form format,
MATLAB displays an error message of the following form:

Illegal character in statement label field

mex supports the fixed source form. The difference between free and fixed
source forms is explained in the Fortran Language Reference Manual Source
Forms topic. The URL for this topic is:

http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/
docs/lrm/lrm0015.htm#source_formatmenu?&Record=383697&STASH=7

The URL for the Fortran Language Reference Manual is:

http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/
docs/lrm/dflrm.htm

3-103

http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/docs/lrm/lrm0015.htm#source_formatmenu?&Record=383697&STASH=7
http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/docs/lrm/lrm0015.htm#source_formatmenu?&Record=383697&STASH=7

3 Intro to MEX-Files

3-104

4

C/C++ MEX-Files

• “C/C++ Source MEX-Files” on page 4-2

• “Set Up C/C++ Examples” on page 4-11

• “Pass Scalar Values” on page 4-12

• “Pass Strings” on page 4-14

• “Pass Multiple Inputs or Outputs” on page 4-16

• “Pass Structures and Cell Arrays” on page 4-18

• “Create 2-D Cell Array” on page 4-20

• “Fill mxArray” on page 4-21

• “Prompt User for Input” on page 4-22

• “Handle Complex Data” on page 4-23

• “Handle 8-, 16-, and 32-Bit Data” on page 4-24

• “Manipulate Multidimensional Numerical Arrays” on page 4-25

• “Handle Sparse Arrays” on page 4-27

• “Call MATLAB Functions from C/C++ MEX-Files” on page 4-28

• “Use C++ Features in MEX-Files” on page 4-29

• “Handle Files with C++” on page 4-30

• “Debug C/C++ Language MEX-Files” on page 4-32

• “Handling Large mxArrays” on page 4-43

• “Memory Management” on page 4-47

• “Handling Large File I/O” on page 4-50

4 C/C++ MEX-Files

C/C++ Source MEX-Files

In this section...

“The Components of a C/C++ MEX-File” on page 4-2

“Gateway Routine” on page 4-2

“Computational Routine” on page 4-5

“Preprocessor Macros” on page 4-5

“Data Flow in MEX-Files” on page 4-5

“Creating C++ MEX-Files” on page 4-9

The Components of a C/C++ MEX-File
You create binary MEX-files using the mex build script. mex compiles and
links source files into a shared library called a binary MEX-file, which you
can run at the MATLAB command line. Once compiled, you treat binary
MEX-files like MATLAB functions.

This section explains the components of a source MEX-file, statements you
use in a program source file. Unless otherwise specified, the term ”MEX-file”
refers to a source file.

The MEX-file consists of:

• A “Gateway Routine” on page 4-2 that interfaces C/C++ and MATLAB data.

• A “Computational Routine” on page 4-5 written in C/C++ that performs the
computations you want implemented in the binary MEX-file.

• “Preprocessor Macros” on page 4-5 for building platform-independent code.

Gateway Routine
The gateway routine is the entry point to the MEX-file shared library. It is
through this routine that MATLAB accesses the rest of the routines in your
MEX-files. Use the following guidelines to create a gateway routine:

• “Naming the Gateway Routine” on page 4-3

4-2

C/C++ Source MEX-Files

• “Required Parameters” on page 4-3

• “Creating and Using Source Files” on page 4-4

• “Using MATLAB Libraries” on page 4-4

• “Required Header Files” on page 4-4

• “Naming the MEX-File” on page 4-4

The following is a sample C/C++ MEX-file gateway routine:

void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

{
/* more C/C++ code ... */

}

Naming the Gateway Routine
The name of the gateway routine must be mexFunction.

Required Parameters
A gateway routine must contain the parameters prhs, nrhs, plhs, and nlhs
described in the following table.

Parameter Description

prhs An array of right-hand input arguments.

plhs An array of left-hand output arguments.

nrhs The number of right-hand arguments, or the size of the prhs
array.

nlhs The number of left-hand arguments, or the size of the plhs
array.

Declare prhs and plhs as type mxArray *, which means they point to
MATLAB arrays. They are vectors that contain pointers to the arguments
of the MEX-file.

4-3

4 C/C++ MEX-Files

You can think of the name prhs as representing the “parameters, right-hand
side,” that is, the input parameters. Likewise, plhs represents the
“parameters, left-hand side,” or output parameters.

Creating and Using Source Files
It is good practice to write the gateway routine to call a “Computational
Routine” on page 4-5; however, this is not required. The computational code
can be part of the gateway routine. If you use both gateway and computational
routines, you can combine them into one source file or into separate files. If
you use separate files, the gateway routine must be the first source file listed
in the mex command.

The name of the file containing your gateway routine is important, as
explained in “Naming the MEX-File” on page 4-4.

Using MATLAB Libraries
The MX Matrix Library and the MEX Library describe functions you can use
in your gateway and computational routines that interact with MATLAB
programs and the data in the MATLAB workspace. The MX Matrix Library
functions provide access methods for manipulating MATLAB arrays. The
MEX Library functions perform operations in the MATLAB environment.

Required Header Files
To use the functions in the C/C++ and Fortran API Reference library you
must include the mex header, which declares the entry point and interface
routines. Put this statement in your source file:

#include "mex.h"

Naming the MEX-File
The binary MEX-file name, and hence the name of the function you use in
MATLAB, is the name of the source file containing your gateway routine.

The file extension of the binary MEX-file is platform-dependent. You find
the file extension using the mexext function, which returns the value for
the current machine.

4-4

C/C++ Source MEX-Files

Computational Routine
The computational routine contains the code for performing the computations
you want implemented in the binary MEX-file. Computations can be
numerical computations as well as inputting and outputting data. The
gateway calls the computational routine as a subroutine.

The programming requirements described in “Creating and Using Source
Files” on page 4-4, “Using MATLAB Libraries” on page 4-4, and “Required
Header Files” on page 4-4 might also apply to your computational routine.

Preprocessor Macros
The MX Matrix and MEX libraries use the MATLAB preprocessor macros
mwSize and mwIndex for cross-platform flexibility. mwSize represents
size values, such as array dimensions and number of elements. mwIndex
represents index values, such as indices into arrays.

Data Flow in MEX-Files
The following examples illustrate data flow in MEX-files:

• “Showing Data Input and Output” on page 4-5

• “Gateway Routine Data Flow Diagram” on page 4-6

• “MATLAB Example yprime.c” on page 4-7

Showing Data Input and Output
Suppose your MEX-file myFunction has two input arguments and one
output argument. The MATLAB syntax is [X] = myFunction(Y, Z). To
call myFunction from MATLAB, type:

X = myFunction(Y, Z);

The MATLAB interpreter calls mexFunction, the gateway routine to
myFunction, with the following arguments:

4-5

4 C/C++ MEX-Files

Your input is prhs, a two-element array (nrhs = 2). The first element is a
pointer to an mxArray named Y and the second element is a pointer to an
mxArray named Z.

Your output is plhs, a one-element array (nlhs = 1) where the single element
is a null pointer. The parameter plhs points at nothing because the output X
is not created until the subroutine executes.

The gateway routine creates the output array and sets a pointer to it in
plhs[0]. If the routine does not assign a value to plhs[0] but you assign an
output value to the function when you call it, MATLAB generates an error.

Note It is possible to return an output value even if nlhs = 0. This
corresponds to returning the result in the ans variable.

Gateway Routine Data Flow Diagram
The following MEX Cycle diagram shows how inputs enter a MEX-file, what
functions the gateway routine performs, and how outputs return to MATLAB.

In this example, the syntax of the MEX-file func is [C, D] = func(A,B). In
the figure, a call to func tells MATLAB to pass variables A and B to your
MEX-file. C and D are left unassigned.

The gateway routine func.c uses the mxCreate* functions to create the
MATLAB arrays for your output arguments. It sets plhs[0] and plhs[1]
to the pointers to the newly created MATLAB arrays. It uses the mxGet*

4-6

C/C++ Source MEX-Files

functions to extract your data from your input arguments prhs[0] and
prhs[1]. Finally, it calls your computational routine, passing the input and
output data pointers as function parameters.

MATLAB assigns plhs[0] to C and plhs[1] to D.

���������
-/(%�
�������$

�����-�&��.���
���1��
�����
����
%������	��-/(%�
���
������&���������
	��
�����

��	
��

'�(&)*����+
(%,

2�����	�������
-/(%�
�������$

��#�'-)�
��
����
�����������#�'.)�

�
��������&�

'�(&)*����+
(%,

��	
��

������

1�
����#3	���
��)
������#�(���
���/�0��#�')(
������#�(���������
���/�0��#�'),

!����������+�����	�
���

'����������������	���
������������
����-�&��.�������������	���	��	�
���	������������#�'-)('.)(���
���������
��������������+����������
-�&��.�������

'��������1����	���
�������#�����
��	��������������#�'-)('.)(�����

�������	����	���	�
�����
������

��	�������	��	���������
������
�	���
�������������

�����

�������

��������
���/�0%
%�*���#�'.)

��������
���/�0

�*���#�'-)

������/�0&
&�*���#�'.)

������/�0�
��*���#�'-)

C/C++ MEX Cycle

MATLAB Example yprime.c
Look at the example, yprime.c, found in your
matlabroot/extern/examples/mex/ folder. (“Build MEX-Files” on page
3-27 explains how to create the binary MEX-file.) Its calling syntax is [YP]
= YPRIME(T,Y), where T is an integer and Y is a vector with four elements.
For T=1 and Y=1:4, when you type:

4-7

4 C/C++ MEX-Files

yprime(T,Y)

MATLAB displays:

ans =
2.0000 8.9685 4.0000 -1.0947

The gateway routine validates the input arguments. This step includes
checking the number, type, and size of the input arrays as well as
examining the number of output arrays. If the inputs are not valid, call
mexErrMsgIdAndTxt. For example:

/* Check for proper number of arguments */
if (nrhs != 2) {
mexErrMsgTxt("Two input arguments required.");

} else if (nlhs > 1) {
mexErrMsgTxt("Too many output arguments.");

}

/* Check the dimensions of Y. Y can be 4 X 1 or 1 X 4. */
m = mxGetM(Y_IN);
n = mxGetN(Y_IN);
if (!mxIsDouble(Y_IN) || mxIsComplex(Y_IN) ||

(MAX(m,n) != 4) || (MIN(m,n) != 1)) {
mexErrMsgTxt("YPRIME requires that Y be a 4 x 1 vector.");

}

To create MATLAB arrays, call one of the mxCreate* functions, like
mxCreateDoubleMatrix, mxCreateSparse, or mxCreateString. If it needs
them, the gateway routine can call mxCalloc to allocate temporary work
arrays for the computational routine. In this example:

/* Create a matrix for the return argument */
plhs[0] = mxCreateDoubleMatrix(m, n, mxREAL);

In the gateway routine, you access the data in mxArray and manipulate
it in your computational subroutine. For example, the expression
mxGetPr(prhs[0]) returns a pointer of type double * to the real data in the
mxArray pointed to by prhs[0]. You can then use this pointer like any other
pointer of type double * in C/C++. For example:

4-8

C/C++ Source MEX-Files

/* Assign pointers to the various parameters */
yp = mxGetPr(plhs[0]);

In this example, a computational routine, yprime, performs the calculations:

/* Do the actual computations in a subroutine */
yprime(yp,t,y);

After calling your computational routine from the gateway, you can set a
pointer of type mxArray to the data it returns. MATLAB recognizes the output
from your computational routine as the output from the binary MEX-file.

When a binary MEX-file completes its task, it returns control to MATLAB.
MATLAB automatically destroys any arrays created by the MEX-file not
returned through the left-hand side arguments.

MathWorks recommends that MEX-file functions destroy their own temporary
arrays and free their own dynamically allocated memory. It is more efficient
to perform this cleanup in the source MEX-file than to rely on the automatic
mechanism.

Creating C++ MEX-Files
MEX-files support all C++ language standards.

This section discusses specific C++ language issues to consider when creating
and using MEX-files.

Creating Your C++ Source File
The C++ source code for the examples provided by MATLAB use the .cpp file
extension. The extension .cpp is unambiguous and generally recognized by
C++ compilers. Other possible extensions include .C, .cc, and .cxx.

Compiling and Linking
You can run a C++ MEX-file only on systems with the same version of
MATLAB that the file was compiled on.

Use mex -setup to select a C++ compiler, then type:

4-9

4 C/C++ MEX-Files

mex filename.cpp

You can use command-line options, as shown in the “MEX Script Switches” on
page 3-43 table.

Your link command must have all the necessary DLL files that the
MEX-function is dependent upon. To help you check for dependent files, see
the Troubleshooting topic “DLL Files Not on Path on Windows Systems”
on page 3-85.

Examples
The examples “Use C++ Features in MEX-Files” on page 4-29 and “Handle
Files with C++” on page 4-30 illustrate the use of C++ by walking through
source code examples available in your MATLAB folder.

Memory Considerations For Class Destructors
Do not use the mxFree or mxDestroyArray functions in a C++ destructor
of a class used in a MEX-function. If the MEX-function throws an error,
MATLAB cleans up MEX-file variables, as described in “Automatic Cleanup
of Temporary Arrays” on page 4-47.

If an error occurs that causes the object to go out of scope, MATLAB calls
the C++ destructor. Freeing memory directly in the destructor means both
MATLAB and the destructor free the same memory, which can corrupt
memory.

Use mexPrintf to Print to the MATLAB Command Window
Using cout or the C-language printf function does not work as expected in
C++ MEX-files. Use the mexPrintf function instead.

4-10

Set Up C/C++ Examples

Set Up C/C++ Examples
The MX Matrix Library provides a full set of routines that handle the types
supported by MATLAB. For each data type there is a specific set of functions
that you can use for data manipulation. The first example discusses the
simple case of doubling a scalar. After that, the examples discuss how to pass
in, manipulate, and pass back various data types, and how to handle multiple
inputs and outputs. Finally, the sections discuss passing and manipulating
various MATLAB types.

Source code for the examples in this section are in the
matlabroot/extern/examples/refbook folder. To build an
example, first copy the file to a writable folder, such as c:\work, on your path:

copyfile(fullfile(matlabroot,'extern','examples','refbook',...
'filename.c'), fullfile('c:','work'));

where filename is the name of the example.

Make sure that you have a C/C++ compiler selected using the mex -setup
command. Then at the MATLAB command prompt, type:

mex filename.c

The following topics look at source code for the examples. Unless otherwise
specified, the term ”MEX-file” refers to a source file.

For a list of MEX example files available with MATLAB, see “Table of
MEX-File Source Code Files” on page 3-38.

4-11

4 C/C++ MEX-Files

Pass Scalar Values
Look at a simple example of C code and its MEX-file equivalent. This
computational function takes a scalar and doubles it:

#include <math.h>
void timestwo(double y[], double x[])
{

y[0] = 2.0*x[0];
return;

}

To see the same function written in the MEX-file format (timestwo.c), open
the file in MATLAB Editor.

In C/C++, the compiler checks function arguments. In MATLAB, you can
pass any number or type of arguments to a function, which is responsible for
argument checking. This is also true for MEX-files. Your program must safely
handle any number of input or output arguments of any supported type.

To compile and link this example, at the MATLAB prompt, type:

mex timestwo.c

MATLAB creates the binary MEX-file called timestwo with an extension
corresponding to the platform on which you are running. You can now call
timestwo like a MATLAB function:

x = 2;
y = timestwo(x)
y =

4

You can create and compile MEX-files in MATLAB or at your operating system
prompt. MATLAB uses the mex.m file. The Microsoft Windows operating
system uses the mex.bat file, and UNIX uses the mex.sh file. Typing:

mex filename

at either prompt produces a compiled version of your MEX-file.

4-12

Pass Scalar Values

The previous example views scalars as 1-by-1 matrices. Alternatively, you
can use a special API function called mxGetScalar that returns the values of
scalars instead of pointers to copies of scalar variables (timestwoalt.c). To
see the alternative code (error checking has been omitted for brevity), open
the file in MATLAB Editor.

This example passes the input scalar x by value into the timestwo_alt
subroutine, but passes the output scalar y by reference.

4-13

4 C/C++ MEX-Files

Pass Strings
You can pass any MATLAB type to and from MEX-files. The example
revord.c accepts a string and returns the characters in reverse order. To see
the example, open the file in MATLAB Editor.

In this example, the API function mxCalloc replaces calloc, the standard
C/C++ function for dynamic memory allocation. mxCalloc allocates dynamic
memory using the MATLAB memory manager and initializes it to zero. Use
mxCalloc in any situation where C/C++ would require the use of calloc. The
same is true for mxMalloc and mxRealloc; use mxMalloc in any situation
where C/C++ would require the use of malloc and use mxRealloc where
C/C++ would require realloc.

Note MATLAB automatically frees up memory allocated with the MX Matrix
Library allocation routines (mxCalloc, mxMalloc, mxRealloc) upon exiting
your MEX-file. If you do not want to free this memory, use the API function
mexMakeMemoryPersistent.

The gateway routine mexFunction allocates memory for the input and output
strings. Since these are C-style strings, they need to be one greater than
the number of elements in the MATLAB string. Next, the MATLAB string
is copied to the input string. Both the input and output strings are passed
to the computational subroutine (revord), which loads the output in reverse
order. The output buffer is a valid null-terminated C string because mxCalloc
initializes the memory to 0. The API function mxCreateString then creates
a MATLAB string from the C string, output_buf. Finally, plhs[0], the
left-hand side return argument to MATLAB, is set to the MATLAB array
you just created.

By isolating variables of type mxArray from the computational subroutine,
you can avoid having to make significant changes to your original C/C++ code.

To build this example, at the command prompt type:

mex revord.c

Type:

4-14

Pass Strings

x = 'hello world';
y = revord(x)

MATLAB displays:

y =
dlrow olleh

4-15

4 C/C++ MEX-Files

Pass Multiple Inputs or Outputs
The plhs[] and prhs[] parameters are vectors that contain pointers to each
left-hand side (output) variable and each right-hand side (input) variable,
respectively. Accordingly, plhs[0] contains a pointer to the first left-hand side
argument, plhs[1] contains a pointer to the second left-hand side argument,
and so on. Likewise, prhs[0] contains a pointer to the first right-hand side
argument, prhs[1] points to the second, and so on.

This example, xtimesy, multiplies an input scalar by an input scalar or
matrix and outputs a matrix.

To build this example, at the command prompt type:

mex xtimesy.c

Use xtimesy with two scalars:

x = 7;
y = 7;
z = xtimesy(x,y)

MATLAB displays:

z =
49

Use xtimesy with a scalar and a matrix:

x = 9;
y = ones(3);
z = xtimesy(x,y)

MATLAB displays:

z =
9 9 9
9 9 9
9 9 9

4-16

Pass Multiple Inputs or Outputs

To see the corresponding MEX-file C code xtimesy.c, open the file in
MATLAB Editor.

As this example shows, creating MEX-file gateways that handle multiple
inputs and outputs is straightforward. You must match the indices of the
prhs and plhs vectors with the input and output arguments of your function.
In the example above, the input variable x corresponds to prhs[0] and the
input variable y to prhs[1].

The mxGetScalar function returns the value of x, rather than a pointer to x.
This is just an alternative way of handling scalars. You could treat x as a
1-by-1 matrix and use mxGetPr to return a pointer to x.

4-17

4 C/C++ MEX-Files

Pass Structures and Cell Arrays
Passing structures and cell arrays into MEX-files is like passing any other
data type, except the data itself is of type mxArray. In practice, this means
that mxGetField (for structures) and mxGetCell (for cell arrays) return
pointers of type mxArray. You treat the pointers like any other pointers of
type mxArray, but if you want to pass the data contained in the mxArray to a
C/C++ routine, you must use an API function such as mxGetData to access it.

This example takes an m-by-n structure matrix as input and returns a new
1-by-1 structure that contains these fields:

• String input generates an m-by-n cell array

• Numeric input (noncomplex, scalar values) generates an m-by-n vector of
numbers with the same class ID as the input, for example, int, double,
and so on.

To see the program phonebook.c, open the file in MATLAB Editor.

To build this example, at the command prompt type:

mex phonebook.c

To see how this program works, enter this structure:

friends(1).name = 'Jordan Robert';
friends(1).phone = 3386;
friends(2).name = 'Mary Smith';
friends(2).phone = 3912;
friends(3).name = 'Stacy Flora';
friends(3).phone = 3238;
friends(4).name = 'Harry Alpert';
friends(4).phone = 3077;

The results of this input are:

phonebook(friends)

ans =
name: {1x4 cell }

4-18

Pass Structures and Cell Arrays

phone: [3386 3912 3238 3077]

4-19

4 C/C++ MEX-Files

Create 2-D Cell Array
This example, mxcreatecellmatrix.c, takes the input arguments and places
them in a cell array. It then displays the contents through a mexCallMATLAB
call. To see the program, open the file in MATLAB Editor.

Create input arguments.

str1 = 'hello';
str2 = 'world';
num = 2012;

Create a 3x1 cell array and call disp to display the contents.

mxcreatecellmatrix(str1,str2,num)

The contents of the created cell is:

'hello'
'world'
[2012]

4-20

Fill mxArray

Fill mxArray
You can move data from a C/C++ program into an mxArray using the
MX Matrix Library. The functions you use depend on the type of data in
your application. Use the mxSetPr and mxGetPr functions for data of type
double. For numeric data other than double, use the mxSetData function.
For nonnumeric data, see the examples on the mxCreateString function
reference page.

The following examples use a variable data to represent data from
a computational routine (described in “The Components of a C/C++
MEX-File” on page 4-2). Each example creates an mxArray using the
mxCreateNumericMatrix function, fills it with data, and returns it as the
output argument plhs[0].

These examples use real data only. If you have complex data, use the mxGetPi
and mxSetPi functions as needed.

Copying Data Directly into an mxArray
The arrayFillGetPr.c example uses the mxGetPr function to copy the values
from data to plhs[0]. To see the example, open the file in MATLAB Editor.

Pointing to Data
The arrayFillSetPr.c example uses the mxSetPr function to point plhs[0]
to data. To see the example, open the file in MATLAB Editor.

The example arrayFillSetData.c illustrates how to fill an mxArray for
numeric types other than double. To see the example, open the file in
MATLAB Editor.

4-21

4 C/C++ MEX-Files

Prompt User for Input
Because MATLAB does not use stdin and stdout, do not use C/C++ functions
like scanf and printf to prompt for user input. The following example
shows how to use mexCallMATLAB with the input function to get a number
from the user.

#include "mex.h"
#include "string.h"
void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])
{

mxArray *new_number, *str;
double out;

str = mxCreateString("Enter extension: ");
mexCallMATLAB(1,&new_number,1,&str,"input");
out = mxGetScalar(new_number);
mexPrintf("You entered: %.0f ", out);
mxDestroyArray(new_number);
mxDestroyArray(str);
return;

}

4-22

Handle Complex Data

Handle Complex Data
MATLAB separates complex data into real and imaginary parts. The
MATLAB API provides two functions, mxGetPr and mxGetPi, that return
pointers (of type double *) to the real and imaginary parts of your data.

This example, convec.c, takes two complex row vectors and convolves them.
To see the example, open the file in MATLAB Editor.

To build this example, at the command prompt type:

mex convec.c

Entering these numbers at the MATLAB prompt:

x = [3.000 - 1.000i, 4.000 + 2.000i, 7.000 - 3.000i];
y = [8.000 - 6.000i, 12.000 + 16.000i, 40.000 - 42.000i];

and invoking the new MEX-file:

z = convec(x,y)

results in:

z =

1.0e+02 *

Columns 1 through 4

0.1800 - 0.2600i 0.9600 + 0.2800i 1.3200 - 1.4400i 3.7600 - 0.1200i

Column 5

1.5400 - 4.1400i

which agrees with the results from the built-in MATLAB function conv.

4-23

4 C/C++ MEX-Files

Handle 8-, 16-, and 32-Bit Data
The MATLAB API provides a set of functions that support signed and
unsigned 8-, 16-, and 32-bit data. For example, the mxCreateNumericArray
function constructs an unpopulated N-dimensional numeric array with a
specified data size. For more information, see mxClassID.

Once you have created an unpopulated MATLAB array of a specified data
type, you can access the data using mxGetData and mxGetImagData. These two
functions return pointers to the real and imaginary data. You can perform
arithmetic on data of 8-, 16-, or 32-bit precision in MEX-files and return the
result to MATLAB, which recognizes the correct data class.

The example, doubleelement.c, constructs a 2-by-2 matrix with unsigned
16-bit integers, doubles each element, and returns both matrices to MATLAB.
To see the example, open the file in MATLAB Editor.

To build this example, at the command prompt type:

mex doubleelement.c

At the MATLAB prompt, entering:

doubleelement

produces:

ans =
2 6
4 8

The output of this function is a 2-by-2 matrix populated with unsigned 16-bit
integers.

4-24

Manipulate Multidimensional Numerical Arrays

Manipulate Multidimensional Numerical Arrays
You can manipulate multidimensional numerical arrays by using mxGetData
and mxGetImagData. These functions return pointers to the real and
imaginary parts of the data stored in the original multidimensional array.
The example, findnz.c, takes an N-dimensional array of doubles and returns
the indices for the nonzero elements in the array. To see the example, open
the file in MATLAB Editor.

To build this example, at the command prompt type:

mex findnz.c

Entering a sample matrix at the MATLAB prompt gives:

matrix = [3 0 9 0; 0 8 2 4; 0 9 2 4; 3 0 9 3; 9 9 2 0]
matrix =

3 0 9 0
0 8 2 4
0 9 2 4
3 0 9 3
9 9 2 0

This example determines the position of all nonzero elements in the matrix.
Running the MEX-file on this matrix produces:

4-25

4 C/C++ MEX-Files

nz = findnz(matrix)
nz =

1 1
4 1
5 1
2 2
3 2
5 2
1 3
2 3
3 3
4 3
5 3
2 4
3 4
4 4

4-26

Handle Sparse Arrays

Handle Sparse Arrays
The MATLAB API provides a set of functions that allow you to create and
manipulate sparse arrays from within your MEX-files. These API routines
access and manipulate ir and jc, two of the parameters associated with
sparse arrays. For more information on how MATLAB stores sparse arrays,
see “The MATLAB Array” on page 3-18.

The example, fulltosparse.c, illustrates how to populate a sparse matrix.
To see the example, open the file in MATLAB Editor.

To build this example, at the command prompt type:

mex fulltosparse.c

At the MATLAB prompt, entering:

full = eye(5)
full =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

creates a full, 5-by-5 identity matrix. Using fulltosparse on the full matrix
produces the corresponding sparse matrix.

spar = fulltosparse(full)
spar =

(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1
(5,5) 1

4-27

4 C/C++ MEX-Files

Call MATLAB Functions from C/C++ MEX-Files
It is possible to call MATLAB functions, operators, user-defined functions,
and other binary MEX-files from within your C/C++ source code by using the
API function mexCallMATLAB.

The example, sincall.c, creates an mxArray, passes various pointers to a
local function to acquire data, and calls mexCallMATLAB to calculate the sine
function and plot the results. To see the example, open the file in MATLAB
Editor.

To build this example, at the command prompt type:

mex sincall.c

Running this example:

sincall

displays a sin curve equivalent to executing the following MATLAB
commands:

MAX=1000;

mm = MAX/2;
for i=1:mm-1

X(i)=i*(4*3.14159/MAX);
end

Y = sin(X);
plot(X,Y)

4-28

Use C++ Features in MEX-Files

Use C++ Features in MEX-Files
This example, mexcpp.cpp, illustrates how to use C++ code with your C
language MEX-file. It uses member functions, constructors, destructors, and
the iostream include file. To see the example, open the file in MATLAB
Editor.

To build this example, at the command prompt type:

mex mexcpp.cpp

The calling syntax is mexcpp(num1, num2).

The routine defines a class, myData, with member functions display and
set_data, and variables v1 and v2. It constructs an object d of class myData
and displays the initialized values of v1 and v2. It then sets v1 and v2 to your
input, num1 and num2, and displays the new values. Finally, the delete
operator cleans up the object.

4-29

4 C/C++ MEX-Files

Handle Files with C++
This example, mexatexit.cpp, illustrates C++ file handling features. To see
the C++ code, open the C++ file in MATLAB Editor. To compare it with a C
code example mexatexit.c, open this file in MATLAB Editor.

C Example
The C code example registers the mexAtExit function to perform cleanup
tasks (close the data file) when the MEX-file clears. This example prints a
message on the screen (using mexPrintf) when performing file operations
fopen, fprintf, and fclose.

To build the MEX-file, type:

mex mexatexit.c

If you type:

x = 'my input string';
mexatexit(x)

MATLAB displays:

Opening file matlab.data.
Writing data to file.

To clear the MEX-file, type:

clear mexatexit

MATLAB displays:

Closing file matlab.data.

You can see the contents of matlab.data by typing:

type matlab.data

MATLAB displays:

my input string

4-30

Handle Files with C++

C++ Example
The C++ example does not use the mexAtExit function. A fileresource class
handles the file open and close functions. The MEX-file calls the destructor
for this class (which closes the data file). This example also prints a message
on the screen when performing operations on the data file. However, in this
case, the only C file operation performed is the write operation, fprintf.

To build the mexatexit.cpp MEX-file, make sure that you have selected
a C++ compiler, then type:

mex mexatexit.cpp

If you type:

z = 'for the C++ MEX-file';
mexatexit(x)
mexatexit(z)
clear mexatexit

MATLAB displays:

Writing data to file.
Writing data to file.

To see the contents of matlab.data, type:

type matlab.data

MATLAB displays:

my input string
for the C++ MEX-file

4-31

4 C/C++ MEX-Files

Debug C/C++ Language MEX-Files

In this section...

“Notes on Debugging” on page 4-32

“Debugging on the Microsoft Windows Platforms” on page 4-32

“Debugging on Linux Platforms” on page 4-40

Notes on Debugging
The examples show how to debug yprime.c, found in your
matlabroot/extern/examples/mex/ folder.

Binary MEX-files built with the -g option do not execute on other computers
because they rely on files that are not distributed with MATLAB software.
For additional information on isolating problems with MEX-files, see
“Troubleshoot MEX-Files”.

Debugging on the Microsoft Windows Platforms
The Microsoft Visual Studio development environment provides complete
source code debugging, including the ability to set breakpoints, examine
variables, and step through the source code line-by-line.

Visual Studio 2005
This section describes how to debug using Visual Studio.

1 Select the Microsoft Visual C++ 2005 compiler. At the MATLAB prompt,
type:

mex -setup

Type y to locate installed compilers, and then type the number
corresponding to this compiler.

2 Next, compile the source MEX-file with the -g option, which builds the file
with debugging symbols included. For example:

copyfile(fullfile(matlabroot,'extern','examples','mex',...

4-32

Debug C/C++ Language MEX-Files

'yprime.c'), fullfile('c:','work'));
mex -g yprime.c

On a 32-bit platform, this command creates the executable file
yprime.mexw32.

3 Start Visual Studio. Do not exit your MATLAB session.

4-33

4 C/C++ MEX-Files

4 From the Visual Studio Tools menu, select Attach to Process...1

1. used by permission

4-34

Debug C/C++ Language MEX-Files

5 In the Attach to Process dialog box, select the MATLAB process and click
Attach.

4-35

4 C/C++ MEX-Files

Visual Studio loads data then displays an empty code pane.

4-36

Debug C/C++ Language MEX-Files

6 Open the source file yprime.c by selecting File > Open > File. yprime.c
is found in the matlabroot/extern/examples/mex/ folder.

7 Set a breakpoint by right-clicking the desired line of code and following
Breakpoint > Insert Breakpoint on the context menu. It is often

4-37

4 C/C++ MEX-Files

convenient to set a breakpoint at mexFunction to stop at the beginning of
the gateway routine.

If you have not yet run the executable file, ignore any “!” icon that appears
with the breakpoint next to the line of code.

4-38

Debug C/C++ Language MEX-Files

Once you hit one of your breakpoints, you can make full use of any
commands the debugger provides to examine variables, display memory,
or inspect registers.

8 Run the binary MEX-file in MATLAB. After typing:

yprime(1,1:4)

4-39

4 C/C++ MEX-Files

yprime.c is opened in the Visual Studio debugger at the first breakpoint.

9 If you select Debug > Continue, MATLAB displays:

ans =

2.0000 8.9685 4.0000 -1.0947

For more information on how to debug in the Visual Studio environment,
see your Microsoft documentation.

Debugging on Linux Platforms
The GNU® Debugger gdb, available on Linux systems, provides complete
source code debugging, including the ability to set breakpoints, examine
variables, and step through the source code line-by-line.

GNU Debugger gdb
In this procedure, the MATLAB command prompt >> is shown in front of
MATLAB commands, and linux> represents a Linux prompt; your system
may show a different prompt. The debugger prompt is <gdb>.

To debug with gdb:

1 Compile the source MEX-file with the -g option, which builds the file with
debugging symbols included. For this example, at the Linux prompt, type:

linux> mex -g yprime.c

2 At the Linux prompt, start the gdb debugger using the matlab function -D
option:

linux> matlab -Dgdb

3 Start MATLAB without the Java® Virtual Machine (JVM™) by using the
-nojvm startup flag:

<gdb> run -nojvm

4 In MATLAB, enable debugging with the dbmex function and run your
binary MEX-file:

4-40

Debug C/C++ Language MEX-Files

>> dbmex on
>> yprime(1,1:4)

5 At this point, you are ready to start debugging.

It is often convenient to set a breakpoint at mexFunction so you stop at the
beginning of the gateway routine.

<gdb> break mexFunction
<gdb> continue

6 Once you hit one of your breakpoints, you can make full use of any
commands the debugger provides to examine variables, display memory,
or inspect registers.

To proceed from a breakpoint, type:

<gdb> continue

7 After stopping at the last breakpoint, type:

<gdb> continue

yprime finishes and MATLAB displays:

ans =

2.0000 8.9685 4.0000 -1.0947

8 From the MATLAB prompt you can return control to the debugger by
typing:

>> dbmex stop

Or, if you are finished running MATLAB, type:

>> quit

9 When you are finished with the debugger, type:

<gdb> quit

You return to the Linux prompt.

4-41

4 C/C++ MEX-Files

Refer to the documentation provided with your debugger for more information
on its use.

4-42

Handling Large mxArrays

Handling Large mxArrays

In this section...

“Using the 64-Bit API” on page 4-43

“Building the Binary MEX-File” on page 4-45

“Example” on page 4-45

“Caution Using Negative Values” on page 4-46

“Building Cross-Platform Applications” on page 4-46

Binary MEX-files built on 64-bit platforms can handle 64-bit mxArrays. These
large data arrays can have up to 248–1 elements. The maximum number of
elements a sparse mxArray can have is 248-2.

Using the following instructions creates platform-independent binary
MEX-files as well.

Your system configuration can impact the performance of MATLAB. The
64-bit processor requirement enables you to create the mxArray and access
data in it. However, your system’s memory, in particular the size of RAM
and virtual memory, determine the speed at which MATLAB processes the
mxArray. The more memory available, the faster the processing.

The amount of RAM also limits the amount of data you can process at one
time in MATLAB. For guidance on memory issues, see “Strategies for Efficient
Use of Memory” in the Programming Fundamentals documentation. Memory
management within source MEX-files can have special considerations, as
described in “Memory Management” on page 4-47.

Using the 64-Bit API
The signatures of the API functions shown in the following table use the
mwSize or mwIndex types to work with a 64-bit mxArray. The variables you
use in your source code to call these functions must be the correct type.

4-43

4 C/C++ MEX-Files

mxArray Functions Using mwSize/mwIndex

mxCalcSingleSubscript mxCreateSparseLogicalMatrix 2

mxCalloc mxCreateStructArray

mxCopyCharacterToPtr1 mxCreateStructMatrix

mxCopyComplex16ToPtr1 mxGetCell

mxCopyComplex8ToPtr1 mxGetDimensions

mxCopyInteger1ToPtr1 mxGetElementSize

mxCopyInteger2ToPtr1 mxGetField

mxCopyInteger4ToPtr1 mxGetFieldByNumber

mxCopyPtrToCharacter1 mxGetIr

mxCopyPtrToComplex161 mxGetJc

mxCopyPtrToComplex81 mxGetM

mxCopyPtrToInteger11 mxGetN

mxCopyPtrToInteger21 mxGetNumberOfDimensions

mxCopyPtrToInteger41 mxGetNumberOfElements

mxCopyPtrToPtrArray1 mxGetNzmax

mxCopyPtrToReal41 mxGetProperty

mxCopyPtrToReal81 mxGetString

mxCopyReal4ToPtr1 mxMalloc

mxCopyReal8ToPtr1 mxRealloc

mxCreateCellArray mxSetCell

mxCreateCellMatrix mxSetDimensions

mxCreateCharArray mxSetField

mxCreateCharMatrixFromStrings mxSetFieldByNumber

mxCreateDoubleMatrix mxSetIr

mxCreateLogicalArray2 mxSetJc

mxCreateLogicalMatrix2 mxSetM

mxCreateNumericArray mxSetN

4-44

Handling Large mxArrays

mxArray Functions Using mwSize/mwIndex (Continued)

mxCreateNumericMatrix mxSetNzmax

mxCreateSparse mxSetProperty

1Fortran function only

2C function only

Functions in this API use the mwIndex and mwSize types. For information
about using these macros, see “Required Header Files” on page 4-4.

Building the Binary MEX-File
Use the mex build script option -largeArrayDims with the 64-bit API.

Example
The example, arraySize.c in matlabroot/extern/examples/mex, illustrates
memory requirements of large mxArrays. To see the example, open the file in
MATLAB Editor.

This function requires one positive scalar numeric input, which it uses to
create a square matrix. It checks the size of the input to make sure your
system can theoretically create a matrix of this size. If the input is valid, it
displays the size of the mxArray in kilobytes.

To build this MEX-file, type:

mex -largeArrayDims arraySize.c

To run the MEX-file, type:

arraySize(2^10)

If your system has enough available memory, MATLAB displays:

Dimensions: 1024 x 1024
Size of array in kilobytes: 1024

4-45

4 C/C++ MEX-Files

If your system does not have enough memory to create the array, MATLAB
displays an Out of memory error.

You can experiment with this function to test the performance and limits of
handling large arrays on your system.

Caution Using Negative Values
When using the 64-bit API, mwSize and mwIndex are equivalent to size_t in
C/C++. This type is unsigned, unlike int, which is the type used in the 32-bit
API. Be careful not to pass any negative values to functions that take mwSize
or mwIndex arguments. Do not cast negative int values to mwSize or mwIndex;
the returned value cannot be predicted. Instead, change your code to avoid
using negative values.

Building Cross-Platform Applications
If you develop cross-platform applications (programs that can run on both 32-
and 64-bit architectures), you must pay attention to the upper limit of values
you use for mwSize and mwIndex. The 32-bit application reads these values
and assigns them to variables declared as int in C/C++. Be careful to avoid
assigning a large mwSize or mwIndex value to an int or other variable that
might be too small.

4-46

Memory Management

Memory Management

In this section...

“Automatic Cleanup of Temporary Arrays” on page 4-47

“Persistent Arrays” on page 4-48

Memory management in MEX-files is similar to memory management in
any C/C++ or Fortran application. However, there are special considerations
because a binary MEX-file exists within the context of a larger application,
MATLAB.

To avoid common problems related to memory management, see “Memory
Management Issues” on page 3-97.

Automatic Cleanup of Temporary Arrays
When a binary MEX-file returns control to MATLAB, it returns the results
of its computations in the output arguments—the mxArrays contained in the
left-hand side arguments plhs[]. MATLAB destroys any mxArray created by
the MEX-file that is not in this argument list. In addition, MATLAB frees any
memory that was allocated in the MEX-file using the mxCalloc, mxMalloc, or
mxRealloc functions.

MathWorks recommends that MEX-file functions destroy their own temporary
arrays and free their own dynamically allocated memory. It is more efficient
to perform this cleanup in the source MEX-file than to rely on the automatic
mechanism. However, there are several circumstances in which the MEX-file
does not reach its normal return statement.

The normal return is not reached if:

• A call to mexErrMsgTxt occurs.

• A call to mexCallMATLAB occurs and the function being called creates
an error. (A source MEX-file can trap such errors by using the
mexCallMATLABWithTrap function, but not all MEX-files necessarily need
to trap errors.)

• The user interrupts the binary MEX-file’s execution using Ctrl+C.

4-47

4 C/C++ MEX-Files

• The binary MEX-file runs out of memory. When this happens, the
MATLAB out-of-memory handler immediately terminates the MEX-file.

A careful MEX-file programmer can ensure safe cleanup of all temporary
arrays and memory before returning in the first two cases, but not in the
last two cases. In the last two cases, the automatic cleanup mechanism is
necessary to prevent memory leaks.

Persistent Arrays
You can exempt an array, or a piece of memory, from the MATLAB automatic
cleanup by calling mexMakeArrayPersistent or mexMakeMemoryPersistent.
However, if a binary MEX-file creates such persistent objects, there is a
danger that a memory leak could occur if the MEX-file is cleared before the
persistent object is properly destroyed. To prevent this from happening, a
source MEX-file that creates persistent objects should register a function,
using the mexAtExit function, which disposes of the objects. (You can use a
mexAtExit function to dispose of other resources as well; for example, you can
use mexAtExit to close an open file.)

For example, here is a simple source MEX-file that creates a persistent array
and properly disposes of it.

#include "mex.h"

static int initialized = 0;
static mxArray *persistent_array_ptr = NULL;

void cleanup(void) {
mexPrintf("MEX-file is terminating, destroying array\n");
mxDestroyArray(persistent_array_ptr);

}

void mexFunction(int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[])

{
if (!initialized) {

mexPrintf("MEX-file initializing, creating array\n");

4-48

Memory Management

/* Create persistent array and register its cleanup. */
persistent_array_ptr = mxCreateDoubleMatrix(1, 1, mxREAL);
mexMakeArrayPersistent(persistent_array_ptr);
mexAtExit(cleanup);
initialized = 1;

/* Set the data of the array to some interesting value. */
*mxGetPr(persistent_array_ptr) = 1.0;

} else {
mexPrintf("MEX-file executing; value of first array element is %g\n",

*mxGetPr(persistent_array_ptr));
}

}

4-49

4 C/C++ MEX-Files

Handling Large File I/O

In this section...

“Prerequisites to Using 64-Bit I/O” on page 4-50

“Specifying Constant Literal Values” on page 4-52

“Opening a File” on page 4-53

“Printing Formatted Messages” on page 4-54

“Replacing fseek and ftell with 64-Bit Functions” on page 4-54

“Determining the Size of an Open File” on page 4-55

“Determining the Size of a Closed File” on page 4-56

Prerequisites to Using 64-Bit I/O
MATLAB supports the use of 64-bit file I/O operations in your MEX-file
programs. This enables you to read and write data to files that are up to and
greater than 2 GB (2 31-1 bytes) in size. Note that some operating systems or
compilers might not support files larger than 2 GB. This section describes the
components you need to use 64-bit file I/O in your MEX-file programs:

• “Header File” on page 4-50

• “Type Declarations” on page 4-51

• “Functions” on page 4-51

Header File
Header file io64.h defines many of the types and functions required for
64-bit file I/O. The statement to include this file must be the first #include
statement in your source file and must also precede any system header
include statements:

#include "io64.h"
#include "mex.h"

4-50

Handling Large File I/O

Type Declarations
Use the following types to declare variables used in 64-bit file I/O.

MEX Type Description POSIX

fpos_T Declares a 64-bit int type
for setFilePos() and
getFilePos(). Defined
in io64.h.

fpos_t

int64_T, uint64_T Declares 64-bit signed and
unsigned integer types.
Defined in tmwtypes.h.

long, long

structStat Declares a structure to hold
the size of a file. Defined in
io64.h.

struct stat

FMT64 Used in mexPrintf to
specify length within
a format specifier such
as %d. See example in
the section “Printing
Formatted Messages” on
page 4-54. FMT64 is defined in
tmwtypes.h.

%lld

LL, LLU Suffixes for literal int
constant 64-bit values
(C Standard ISO/IEC
9899:1999(E) Section 6.4.4.1).
Used only on UNIX systems.

LL, LLU

Functions
Use the following functions for 64-bit file I/O. All are defined in the header
file io64.h.

4-51

4 C/C++ MEX-Files

Function Description POSIX

fileno() Gets a file descriptor from a
file pointer

fileno()

fopen() Opens the file and obtains the
file pointer

fopen()

getFileFstat() Gets the file size of a given file
pointer

fstat()

getFilePos() Gets the file position for the
next I/O

fgetpos()

getFileStat() Gets the file size of a given file
name

stat()

setFilePos() Sets the file position for the
next I/O

fsetpos()

Specifying Constant Literal Values
To assign signed and unsigned 64-bit integer literal values, use type
definitions int64_T and uint64_T.

On UNIX systems, to assign a literal value to an integer variable where the
value to be assigned is greater than 2 31-1 signed, you must suffix the value
with LL. If the value is greater than 2 32-1 unsigned, then use LLU as the
suffix. These suffixes apply only to UNIX systems and are considered invalid
on the Microsoft Windows systems.

Note The LL and LLU suffixes are not required for hardcoded (literal) values
less than 2 G (2 31-1), even if they are assigned to a 64-bit int type.

The following example declares a 64-bit integer variable initialized with a
large literal int value, and two 64-bit integer variables:

void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
const mxArray *prhs[])

{
#if defined(_MSC_VER) || defined(__BORLANDC__) /* Windows */

4-52

Handling Large File I/O

int64_T large_offset_example = 9000222000;
#else /* UNIX */

int64_T large_offset_example = 9000222000LL;
#endif

int64_T offset = 0;
int64_T position = 0;

Opening a File
To open a file for reading or writing, use the C/C++ fopen function as you
normally would. As long as you have included io64.h at the start of your
program, fopen works correctly for large files. No changes at all are required
for fread, fwrite, fprintf, fscanf, and fclose.

To open an existing file for read and update in binary mode:

fp = fopen(filename, "r+b");
if (NULL == fp)

{
/* File does not exist. Create new file for writing
* in binary mode.
*/

fp = fopen(filename, "wb");
if (NULL == fp)

{
sprintf(str, "Failed to open/create test file '%s'",

filename);
mexErrMsgTxt(str);
return;
}

else
{
mexPrintf("New test file '%s' created\n",filename);
}

}
else mexPrintf("Existing test file '%s' opened\n",filename);

4-53

4 C/C++ MEX-Files

Printing Formatted Messages
You cannot print 64-bit integers using the %d conversion specifier. Instead,
use FMT64 to specify the appropriate format for your platform. FMT64 is
defined in the header file tmwtypes.h. The following example shows how to
print a message showing the size of a large file:

int64_T large_offset_example = 9000222000LL;

mexPrintf("Example large file size: %" FMT64 "d bytes.\n",
large_offset_example);

Replacing fseek and ftell with 64-Bit Functions
The ANSI C fseek and ftell functions are not 64-bit file I/O capable on
most platforms. The functions setFilePos and getFilePos, however, are
defined as the corresponding POSIX fsetpos and fgetpos, (or fsetpos64 and
fgetpos64), as required by your platform/OS. These functions are 64-bit file
I/O capable on all platforms.

The following example shows how to use setFilePos instead of fseek, and
getFilePos instead of ftell. It uses getFileFstat to find the size of the file,
and then uses setFilePos to seek to the end of the file to prepare for adding
data at the end of the file.

Note Although the offset parameter to setFilePos and getFilePos is
really a pointer to a signed 64-bit integer, int64_T, it must be cast to an
fpos_T*. The fpos_T type is defined in io64.h as the appropriate fpos64_t
or fpos_t, as required by your platform/OS.

getFileFstat(fileno(fp), &statbuf);
fileSize = statbuf.st_size;
offset = fileSize;

setFilePos(fp, (fpos_T*) &offset);
getFilePos(fp, (fpos_T*) &position);

Unlike fseek, setFilePos supports only absolute seeking relative to the
beginning of the file. If you want to do a relative seek, first call getFileFstat

4-54

Handling Large File I/O

to obtain the file size, and then convert the relative offset to an absolute offset
that you can pass to setFilePos.

Determining the Size of an Open File
To get the size of an open file:

• Refresh the record of the file size stored in memory using getFilePos and
setFilePos.

• Retrieve the size of the file using getFileFstat.

Refreshing the File Size Record
Before attempting to retrieve the size of an open file, you should first refresh
the record of the file size residing in memory. If you skip this step on a file
that is opened for writing, the file size returned might be incorrect or 0.

To refresh the file size record, seek to any offset in the file using setFilePos.
If you do not want to change the position of the file pointer, you can seek to
the current position in the file. This example obtains the current offset from
the start of the file, and then seeks to the current position to update the file
size without moving the file pointer:

getFilePos(fp, (fpos_T*) &position);
setFilePos(fp, (fpos_T*) &position);

Getting the File Size
The getFileFstat function takes a file descriptor input argument (that you
can obtain from the file pointer of the open file using fileno) and returns the
size of that file in bytes in the st_size field of a structStat structure:

structStat statbuf;
int64_T fileSize = 0;

if (0 == getFileFstat(fileno(fp), &statbuf))
{
fileSize = statbuf.st_size;
mexPrintf("File size is %" FMT64 "d bytes\n", fileSize);
}

4-55

4 C/C++ MEX-Files

Determining the Size of a Closed File
The getFileStat function takes the file name of a closed file as an input
argument and returns the size of the file in bytes in the st_size field of a
structStat structure:

structStat statbuf;
int64_T fileSize = 0;

if (0 == getFileStat(filename, &statbuf))
{
fileSize = statbuf.st_size;
mexPrintf("File size is %" FMT64 "d bytes\n", fileSize);
}

4-56

5

Fortran MEX-Files

• “Fortran Source MEX-Files” on page 5-2

• “Set Up Fortran Examples” on page 5-12

• “Pass Scalar Values” on page 5-13

• “Pass Strings” on page 5-14

• “Pass Arrays of Strings” on page 5-15

• “Pass Matrices” on page 5-16

• “Pass Integers” on page 5-17

• “Pass Multiple Inputs or Outputs” on page 5-18

• “Handle Complex Data” on page 5-19

• “Dynamically Allocate Memory” on page 5-20

• “Handle Sparse Matrices” on page 5-21

• “Call MATLAB Functions from Fortran MEX-Files” on page 5-22

• “Debug Fortran Source MEX-Files” on page 5-24

• “Handling Large mxArrays” on page 5-27

• “Memory Management” on page 5-30

5 Fortran MEX-Files

Fortran Source MEX-Files

In this section...

“The Components of a Fortran MEX-File” on page 5-2

“Gateway Routine” on page 5-2

“Computational Routine” on page 5-5

“Preprocessor Macros” on page 5-5

“Using the Fortran %val Construct” on page 5-6

“Data Flow in MEX-Files” on page 5-7

The Components of a Fortran MEX-File
You create binary MEX-files using the mex build script. mex compiles and
links source MEX-file files into a shared library called a binary MEX-file,
which you can run from the MATLAB command line. Once compiled, you
treat binary MEX-files like MATLAB functions.

This section explains the components of a source MEX-file, statements you
use in a program source file. Unless otherwise specified, the term ”MEX-file”
refers to a source file.

The MEX-file consists of:

• A “Gateway Routine” on page 5-2 that interfaces Fortran and MATLAB
data.

• A “Computational Routine” on page 5-5 that performs the computations
you want implemented in the binary MEX-file.

• “Preprocessor Macros” on page 5-5 for building platform-independent code.

Gateway Routine
The gateway routine is the entry point to the MEX-file shared library. It is
through this routine that MATLAB accesses the rest of the routines in your
MEX-files. Use the following guidelines to create a gateway routine:

• “Naming the Gateway Routine” on page 5-3

5-2

Fortran Source MEX-Files

• “Required Parameters” on page 5-3

• “Creating and Using Source Files” on page 5-4

• “Using MATLAB Libraries” on page 5-4

• “Required Header Files” on page 5-4

• “Naming the MEX-File” on page 5-5

A Fortran MEX-file gateway routine looks like this:

C The gateway routine.
subroutine mexFunction(nlhs, plhs, nrhs, prhs)
integer nlhs, nrhs
mwpointer plhs(*), prhs(*)

Naming the Gateway Routine
The name of the gateway routine must be mexFunction.

Required Parameters
A gateway routine must contain the parameters prhs, nrhs, plhs, and nlhs
described in the following table.

Parameter Description

prhs An array of right-hand input arguments.

plhs An array of left-hand output arguments.

nrhs The number of right-hand arguments, or the size of the prhs
array.

nlhs The number of left-hand arguments, or the size of the plhs
array.

Declare prhs and plhs as type mxArray *, which means they point to
MATLAB arrays. They are vectors that contain pointers to the arguments
of the MEX-file.

5-3

5 Fortran MEX-Files

You can think of the name prhs as representing the “parameters, right-hand
side,” that is, the input parameters. Likewise, plhs represents the
“parameters, left-hand side,” or output parameters.

Creating and Using Source Files
It is good practice to write the gateway routine to call a “Computational
Routine” on page 4-5; however, this is not required. The computational code
can be part of the gateway routine. If you use both gateway and computational
routines, you can combine them into one source file or into separate files. If
you use separate files, the gateway routine must be the first source file listed
in the mex command.

The name of the file containing your gateway routine is important, as
explained in “Naming the MEX-File” on page 5-5.

Name your Fortran source file with an uppercase .F file extension.

The Difference Between .f and .F Files. Fortran compilers assume
source files using a lowercase .f file extension have been preprocessed. On
most platforms, mex makes sure the file is preprocessed regardless of the
file extension. However, on Apple Macintosh platforms, mex cannot force
preprocessing. Use an uppercase .F file extension to ensure your Fortran
MEX-file is platform independent.

Using MATLAB Libraries
The MX Matrix Library and the MEX Library describe functions you can use
in your gateway and computational routines that interact with MATLAB
programs and the data in the MATLAB workspace. The MX Matrix Library
functions provide access methods for manipulating MATLAB arrays. The
MEX Library functions perform operations in the MATLAB environment.

Required Header Files
To use the functions in the C/C++ and Fortran API Reference library you
must include the fintrf header file, which declares the entry point and
interface routines. Put this statement in your source file:

#include "fintrf.h"

5-4

Fortran Source MEX-Files

Naming the MEX-File
The binary MEX-file name, and hence the name of the function you use in
MATLAB, is the name of the source file containing your gateway routine.

The file extension of the binary MEX-file is platform-dependent. You find
the file extension using the mexext function, which returns the value for
the current machine.

Computational Routine
The computational routine contains the code for performing the computations
you want implemented in the binary MEX-file. Computations can be
numerical computations as well as inputting and outputting data. The
gateway calls the computational routine as a subroutine.

The programming requirements described in “Creating and Using Source
Files” on page 4-4, “Using MATLAB Libraries” on page 4-4, and “Required
Header Files” on page 4-4 might also apply to your computational routine.

Preprocessor Macros
The MX Matrix and MEX libraries use the MATLAB preprocessor macros
mwSize and mwIndex for cross-platform flexibility. mwSize represents
size values, such as array dimensions and number of elements. mwIndex
represents index values, such as indices into arrays.

MATLAB has an additional preprocessor macro for Fortran files, mwPointer.
MATLAB uses a unique data type, the mxArray. Because you cannot create
a new data type in Fortran, MATLAB passes a special identifier, created
by the mwPointer preprocessor macro, to a Fortran program. This is how
you get information about an mxArray in a native Fortran data type. For
example, you can find out the size of the mxArray, determine whether or not
it is a string, and look at the contents of the array. Use mwPointer to build
platform-independent code.

The Fortran preprocessor converts mwPointer to integer*4 when building
binary MEX-files on 32-bit platforms and to integer*8 when building on
64-bit platforms.

5-5

5 Fortran MEX-Files

Note Declaring a pointer to be the incorrect size may cause your program
to crash.

Using the Fortran %val Construct
The Fortran %val(arg) construct specifies that an argument, arg, is to be
passed by value, instead of by reference. The %val construct is supported by
most, but not all, Fortran compilers.

If your compiler does not support the %val construct, you must copy the array
values into a temporary true Fortran array using the mxCopy* routines (for
example, mxCopyPtrToReal8).

A %val Construct Example
If your compiler supports the %val construct, you can use routines that point
directly to the data (that is, the pointer returned by mxGetPr or mxGetPi).
You can use %val to pass this pointer’s contents to a subroutine, where it is
declared as a Fortran double-precision matrix.

For example, consider a gateway routine that calls its computational routine,
yprime, by:

call yprime(%val(yp), %val(t), %val(y))

If your Fortran compiler does not support the %val construct, you would
replace the call to the computational subroutine with:

C Copy array pointers to local arrays.
call mxCopyPtrToReal8(t, tr, 1)
call mxCopyPtrToReal8(y, yr, 4)

C
C Call the computational subroutine.

call yprime(ypr, tr, yr)
C
C Copy local array to output array pointer.

call mxCopyReal8ToPtr(ypr, yp, 4)

5-6

Fortran Source MEX-Files

You must also add the following declaration line to the top of the gateway
routine:

real*8 ypr(4), tr, yr(4)

Note that if you use mxCopyPtrToReal8 or any of the other mxCopy* routines,
the size of the arrays declared in the Fortran gateway routine must be
greater than or equal to the size of the inputs to the MEX-file coming in from
MATLAB. Otherwise, mxCopyPtrToReal8 does not work correctly.

Data Flow in MEX-Files
The following examples illustrate data flow in MEX-files:

• “Showing Data Input and Output” on page 5-7

• “Gateway Routine Data Flow Diagram” on page 5-8

• “MATLAB Example timestwo.F” on page 5-9

Showing Data Input and Output
Suppose your MEX-file myFunction has two input arguments and one
output argument. The MATLAB syntax is [X] = myFunction(Y, Z). To
call myFunction from MATLAB, type:

X = myFunction(Y, Z);

The MATLAB interpreter calls mexFunction, the gateway routine to
myFunction, with the following arguments:

5-7

5 Fortran MEX-Files

Your input is prhs, a two-element array (nrhs = 2). The first element is a
pointer to an mxArray named Y and the second element is a pointer to an
mxArray named Z.

Your output is plhs, a one-element array (nlhs = 1) where the single element
is a null pointer. The parameter plhs points at nothing because the output X
is not created until the subroutine executes.

The gateway routine creates the output array and sets a pointer to it in
plhs[0]. If the routine does not assign a value to plhs[0] but you assign an
output value to the function when you call it, MATLAB generates an error.

Note It is possible to return an output value even if nlhs = 0. This
corresponds to returning the result in the ans variable.

Gateway Routine Data Flow Diagram
The following MEX Cycle diagram shows how inputs enter a MEX-file, what
functions the gateway routine performs, and how outputs return to MATLAB.

In this example, the syntax of the MEX-file func is [C, D] = func(A,B). In
the figure, a call to func tells MATLAB to pass variables A and B to your
MEX-file. C and D are left unassigned.

The gateway routine func.F uses the mxCreate* functions to create the
MATLAB arrays for your output arguments. It sets plhs[0] and plhs[1]
to the pointers to the newly created MATLAB arrays. It uses the mxGet*
functions to extract your data from your input arguments prhs[0] and
prhs[1]. Finally, it calls your computational routine, passing the input and
output data pointers as function parameters.

MATLAB assigns plhs[0] to C and plhs[1] to D.

5-8

Fortran Source MEX-Files

���������
-/(%�
�������$

�����-�&��.���
���1��
�����
����
%������	��-/(%�
���
������&���������
	��
�����

��	
��

'�(&)*����+
(%,

2�����	�������
-/(%�
�������$

��#�+.,�
��
����
�����������#�+�,�

�
��������&�

'�(&)*����+
(%,

��	
��

������

	���	�
�����#3	���
��)
��#�(���#�(���#�(���#�,

����������#�+0,(���#�+0,(��#�(���#�

!����������+�����	�
���

'����������������	���
������������
����-�&��.�������������	���	��	�
���	������������#�+.,(+�,(���
���������
��������������+����������
-�&��.�������

'��������1����	���
�������#�����
��	��������������#�+.,(+�,(�����

�������	��3�������	���	�
�����
��
����
��	�������	��	���������
������
�	���
�������������	
���23���

�����

�������

��������%
%�*���#�+�,

��������

�*���#�+.,

��������&
&�*���#�+�,

���������
��*���#�+.,

Fortran MEX Cycle

MATLAB Example timestwo.F
Let’s look at an example, timestwo.F, found in your
matlabroot/extern/examples/refbook folder. (“Build MEX-Files” on page
3-27 explains how to create the binary MEX-file.) Its calling syntax is Y =
timestwo(X), where X is a number. Type:

x = 99;
y = timestwo(x)

MATLAB displays:

y =
198

5-9

5 Fortran MEX-Files

The gateway routine validates the input arguments. This step includes
checking the number, type, and size of the input arrays as well as
examining the number of output arrays. If the inputs are not valid, call
mexErrMsgIdAndTxt. For example:

C Check for proper number of arguments.

if(nrhs .ne. 1) then

call mexErrMsgIdAndTxt ('timestwo.F', 'One input required.')

elseif(nlhs .gt. 1) then

call mexErrMsgIdAndTxt ('timestwo.F', 'Too many output arguments.')

endif

C Check that the input is a number.

if(mxIsNumeric(prhs(1)) .eq. 0) then

call mexErrMsgIdAndTxt ('timestwo.F', 'Input must be a number.')

endif

To create MATLAB arrays, call one of the mxCreate* functions, like
mxCreateDoubleMatrix, mxCreateSparse, or mxCreateString. If it needs
them, the gateway routine can call mxCalloc to allocate temporary work
arrays for the computational routine. In this example:

C Create matrix for the return argument.
plhs(1) = mxCreateDoubleMatrix(mrows,ncols,0)

In the gateway routine, you access the data in mxArray and manipulate
it in your computational subroutine. For example, the expression
mxGetPr(prhs[0]) returns a pointer of type double * to the real data in the
mxArray pointed to by prhs[0]. You can then use this pointer like any other
pointer of type double * in Fortran. For example:

C Create Fortran array from the input argument.
inputptr = mxGetPr(prhs(1))
call mxCopyPtrToReal8(inputptr,finput,nelements)

In this example, a computational routine, timestwo, performs the calculations:

C Call the computational subroutine.
call timestwo(foutput, finput)

5-10

Fortran Source MEX-Files

After calling your computational routine from the gateway, you can set a
pointer of type mxArray to the data it returns. MATLAB recognizes the output
from your computational routine as the output from the binary MEX-file.

C Load the data into outputptr, which is the output to MATLAB.
call mxCopyReal8ToPtr(foutput,outputptr,nelements)

When a binary MEX-file completes its task, it returns control to MATLAB.
MATLAB automatically destroys any arrays created by the MEX-file not
returned through the left-hand side arguments.

MathWorks recommends that MEX-file functions destroy their own temporary
arrays and free their own dynamically allocated memory. It is more efficient
to perform this cleanup in the source MEX-file than to rely on the automatic
mechanism.

5-11

5 Fortran MEX-Files

Set Up Fortran Examples
The “Fortran Matrix Library” provides a set of Fortran routines that handle
the types supported by MATLAB. For each data type, there is a specific set of
functions that you can use for data manipulation.

Source code for Fortran examples are located in the
matlabroot/extern/examples/refbook folder of your MATLAB installation.
To build these examples, make sure you have a Fortran compiler selected
using the mex -setup command. Then at the MATLAB command prompt,
type:

mex filename.F

where filename is the name of the example.

This section looks at source code for the examples. Unless otherwise specified,
the term ”MEX-file” refers to a source file.

For a list of MEX example files available with MATLAB, see “Table of
MEX-File Source Code Files” on page 3-38.

5-12

Pass Scalar Values

Pass Scalar Values
Let’s look at a simple example of Fortran code and its MEX-file equivalent.
Here is a Fortran computational routine that takes a scalar and doubles it:

subroutine timestwo(y, x)
real*8 x, y

C
y = 2.0 * x
return
end

To see the same function written in the MEX-file format (timestwo.F), open
the file in MATLAB Editor.

To build this example, at the command prompt type:

mex timestwo.F

This command creates the binary MEX-file called timestwo with an extension
corresponding to the machine type on which you’re running. You can now call
timestwo like a MATLAB function:

x = 2;
y = timestwo(x)

MATLAB displays:

y =
4

5-13

5 Fortran MEX-Files

Pass Strings
Passing strings from MATLAB to a Fortran MEX-file is straightforward. The
program revord.F accepts a string and returns the characters in reverse
order. To see the example revord.F, open the file in MATLAB Editor.

After checking for the correct number of inputs, the gateway routine
mexFunction verifies that the input was a row vector string. It then
finds the size of the string and places the string into a Fortran character
array. Note that in the case of character strings, it is not necessary to copy
the data into a Fortran character array using mxCopyPtrToCharacter.
(mxCopyPtrToCharacter is a convenience function for working with
MAT-files.)

To build this example, at the command prompt type:

mex revord.F

Type:

x = 'hello world';
y = revord(x)

MATLAB displays:

y =

dlrow olleh

5-14

Pass Arrays of Strings

Pass Arrays of Strings
Passing arrays of strings adds a complication to the example “Pass Strings”
on page 5-14. Because MATLAB stores elements of a matrix by column
instead of by row, the size of the string array must be correctly defined in the
Fortran MEX-file. The key point is that the row and column sizes as defined
in MATLAB must be reversed in the Fortran MEX-file. Consequently, when
returning to MATLAB, the output matrix must be transposed.

This example places a string array/character matrix into MATLAB as output
arguments rather than placing it directly into the workspace.

To build this example, at the command prompt type:

mex passstr.F

Type:

passstr;

to create the 5-by-15 mystring matrix. You need to do some further
manipulation. The original string matrix is 5-by-15. Because of the way
MATLAB reads and orients elements in matrices, the size of the matrix
must be defined as M=15 and N=5 in the MEX-file. After the matrix is put
into MATLAB, the matrix must be transposed. The program passstr.F
illustrates how to pass a character matrix. To see the code passstr.F, open
the file in MATLAB Editor.

Type:

passstr

MATLAB displays:

ans =

MATLAB
The Scientific
Computing
Environment

by TMW, Inc.

5-15

5 Fortran MEX-Files

Pass Matrices
In MATLAB, you can pass matrices into and out of MEX-files written in
Fortran. You can manipulate the MATLAB arrays by using mxGetPr and
mxGetPi to assign pointers to the real and imaginary parts of the data stored
in the MATLAB arrays. You can create new MATLAB arrays from within
your MEX-file by using mxCreateDoubleMatrix.

The example matsq.F takes a real 2-by-3 matrix and squares each element.
To see the source code, open the file in MATLAB Editor.

After performing error checking to ensure that the correct number of inputs
and outputs was assigned to the gateway subroutine and to verify the input
was in fact a numeric matrix, matsq.F creates a matrix. The matrix is
copied to a Fortran matrix using mxCopyPtrToReal8. Now the computational
subroutine can be called, and the return argument is placed into y_pr, the
pointer to the output, using mxCopyReal8ToPtr.

To build this example, at the command prompt type:

mex matsq.F

For a 2-by-3 real matrix, type:

x = [1 2 3; 4 5 6];
y = matsq(x)

MATLAB displays:

y =
1 4 9

16 25 36

5-16

Pass Integers

Pass Integers
The example matsqint8.F accepts a matrix of MATLAB type int8 and
squares each element. To see the source code, open the file in MATLAB
Editor. Data of type int8, a signed 8-bit integer, is equivalent to
Fortran type integer*1, a signed 1-byte integer. Use the API functions
mxCopyPtrToInteger1 and mxCopyInteger1ToPtr to copy values between
MATLAB and Fortran arrays.

To build this example, at the command prompt type:

mex matsqint8.F

Type:

B = int8([1 2; 3 4; -5 -6]);
y = matsqint8(B)

MATLAB displays:

y =
1 4
9 16

25 36

For information about using other integer data types, consult your Fortran
compiler manual.

5-17

5 Fortran MEX-Files

Pass Multiple Inputs or Outputs
The plhs and prhs parameters (see “The Components of a Fortran MEX-File”
on page 5-2) are vectors containing pointers to the left-hand side (output)
variables and right-hand side (input) variables. plhs(1) contains a pointer to
the first left-hand side argument, plhs(2) contains a pointer to the second
left-hand side argument, and so on. Likewise, prhs(1) contains a pointer to
the first right-hand side argument, prhs(2) points to the second, and so on.

The example xtimesy.F multiplies an input scalar times an input scalar or
matrix. To see the source code, open the file in MATLAB Editor.

As this example shows, creating MEX-file gateways that handle multiple
inputs and outputs is straightforward. All you need to do is keep track of
which indices of the vectors prhs and plhs correspond to which input and
output arguments of your function. In this example, the input variable x
corresponds to prhs(1) and the input variable y to prhs(2).

To build this example, at the command prompt type:

mex xtimesy.F

For an input scalar x and a real 3-by-3 matrix, type:

x = 3; y = ones(3);
z = xtimesy(x, y)

MATLAB displays:

z =
3 3 3
3 3 3
3 3 3

5-18

Handle Complex Data

Handle Complex Data
MATLAB stores complex double-precision data as two vectors of numbers—one
vector contains the real data and the other contains the imaginary data. The
functions mxCopyPtrToComplex16 and mxCopyComplex16ToPtr copy MATLAB
data to a native complex*16 Fortran array.

The example convec.F takes two complex vectors (of length 3) and convolves
them. To see the source code, open the file in MATLAB Editor.

To build this example, at the command prompt type:

mex convec.F

Enter the following at the command prompt:

x = [3 - 1i, 4 + 2i, 7 - 3i];
y = [8 - 6i, 12 + 16i, 40 - 42i];

Type:

z = convec(x, y)

MATLAB displays:

z =

1.0e+02 *

Columns 1 through 4

0.1800 - 0.2600i 0.9600 + 0.2800i 1.3200 - 1.4400i
3.7600 - 0.1200i

Column 5

1.5400 - 4.1400i

which agrees with the results the built-in MATLAB function conv.m produces.

5-19

5 Fortran MEX-Files

Dynamically Allocate Memory
To allocate memory dynamically in a Fortran MEX-file, use %val. (See “Using
the Fortran %val Construct” on page 5-6.) The example dblmat.F takes an
input matrix of real data and doubles each of its elements. To see the source
code, open the file in MATLAB Editor. compute.F is the subroutine dblmat
calls to double the input matrix. (Open the file in MATLAB Editor.)

To build this example, at the command prompt type:

mex dblmat.F compute.F

For the 2-by-3 matrix, type:

x = [1 2 3; 4 5 6];
y = dblmat(x)

MATLAB displays:

y =
2 4 6
8 10 12

Note The dblmat.F example, as well as fulltosparse.F and sincall.F, are
split into two parts, the gateway and the computational subroutine, because
of restrictions in some compilers.

5-20

Handle Sparse Matrices

Handle Sparse Matrices
MATLAB provides a set of functions that allow you to create and manipulate
sparse matrices. There are special parameters associated with sparse
matrices, namely ir, jc, and nzmax. For information on how to use these
parameters and how MATLAB stores sparse matrices in general, see “Sparse
Matrices” on page 3-23.

Note Sparse array indexing is zero-based, not one-based.

The fulltosparse.F example illustrates how to populate a sparse matrix.
To see the source code, open the file in MATLAB Editor. loadsparse.F is
the subroutine fulltosparse calls to fill the mxArray with the sparse data.
(Open the file in MATLAB Editor.)

To build this example, at the command prompt type:

mex fulltosparse.F loadsparse.F

At the command prompt, typing:

full = eye(5)
full =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

creates a full, 5-by-5 identity matrix. Using fulltosparse on the full matrix
produces the corresponding sparse matrix:

spar = fulltosparse(full)
spar =

(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1
(5,5) 1

5-21

5 Fortran MEX-Files

Call MATLAB Functions from Fortran MEX-Files
You can call MATLAB functions, operators, user-defined functions, and other
binary MEX-files from within your Fortran source code by using the API
function mexCallMATLAB. The sincall.F example creates an mxArray, passes
various pointers to a local function to acquire data, and calls mexCallMATLAB
to calculate the sine function and plot the results. To see the source code, open
the file in MATLAB Editor. fill.F is the subroutine sincall calls to fill the
mxArray with data. (Open the file in MATLAB Editor.)

It is possible to use mexCallMATLAB (or any other API routine) from within
your computational Fortran subroutine. Note that you can only call most
MATLAB functions with double-precision data. Some functions that perform
computations, such as eig, do not work correctly with data that is not double
precision.

To build this example, at the command prompt type:

mex sincall.F fill.F

Running this example:

sincall

5-22

Call MATLAB® Functions from Fortran MEX-Files

displays the results:

Note You can generate an object of type mxUNKNOWN_CLASS using
mexCallMATLAB. See the following example.

This function returns two variables but only assigns one of them a value:

function [a,b]=foo[c]
a=2*c;

If you then call foo using mexCallMATLAB, the unassigned output variable is
now of type mxUNKNOWN_CLASS.

5-23

5 Fortran MEX-Files

Debug Fortran Source MEX-Files

In this section...

“Notes on Debugging” on page 5-24

“Debugging on Microsoft Windows Platforms” on page 5-24

“Debugging on Linux Platforms” on page 5-24

Notes on Debugging
The examples show how to debug timestwo.F, found in your
matlabroot/extern/examples/refbook folder.

Binary MEX-files built with the -g option do not execute on other computers
because they rely on files that are not distributed with MATLAB software.
For additional information on isolating problems with MEX-files, see
“Troubleshoot MEX-Files”.

Debugging on Microsoft Windows Platforms
For MEX-files compiled with any version of the Intel Visual Fortran compiler,
you can use the debugging tools found in your version of Microsoft Visual
Studio. Refer to the “Creating C/C++ Language MEX-Files” topic “Debugging
on the Microsoft Windows Platforms” on page 4-32 for instructions on using
this debugger.

Debugging on Linux Platforms
The MATLAB supported Fortran compiler g95 has a -g option for building
binary MEX-files with debug information. Such files can be used with gdb,
the GNU Debugger. This section describes using gdb.

GNU Debugger gdb
In this example, the MATLAB command prompt >> is shown in front of
MATLAB commands, and linux> represents a Linux prompt; your system
may show a different prompt. The debugger prompt is <gdb>.

1 To compile the source MEX-file, type:

5-24

Debug Fortran Source MEX-Files

linux> mex -g timestwo.F

2 At the Linux prompt, start the gdb debugger using the matlab -D option:

linux> matlab -Dgdb

3 Start MATLAB without the Java Virtual Machine (JVM) by using the
-nojvm startup flag:

<gdb> run -nojvm

4 In MATLAB, enable debugging with the dbmex function and run your
binary MEX-file:

>> dbmex on
>> y = timestwo(4)

5 At this point, you are ready to start debugging.

It is often convenient to set a breakpoint at mexFunction so you stop at the
beginning of the gateway routine.

Note The function name may be slightly altered by the compiler (for
example, it may have an underscore appended). To determine how this
symbol appears in a given MEX-file, use the Linux command nm. For
example:

linux> nm timestwo.mexa64 | grep -i mexfunction

The operating system responds with something like:

0000091c T mexfunction_

Use mexFunction in the breakpoint statement. Be sure to use the correct
case.

<gdb> break mexfunction_
<gdb> continue

5-25

5 Fortran MEX-Files

6 Once you hit one of your breakpoints, you can make full use of any
commands the debugger provides to examine variables, display memory,
or inspect registers.

To proceed from a breakpoint, type continue:

<gdb> continue

7 After stopping at the last breakpoint, type:

<gdb> continue

timestwo finishes and MATLAB displays:

y =

8

8 From the MATLAB prompt you can return control to the debugger by
typing:

>> dbmex stop

Or, if you are finished running MATLAB, type:

>> quit

9 When you are finished with the debugger, type:

<gdb> quit

You return to the Linux prompt.

Refer to the documentation provided with your debugger for more information
on its use.

5-26

Handling Large mxArrays

Handling Large mxArrays
Binary MEX-files built on 64-bit platforms can handle 64-bit mxArrays. These
large data arrays can have up to 248–1 elements. The maximum number of
elements a sparse mxArray can have is 248-2.

Using the following instructions creates platform-independent binary
MEX-files as well.

Your system configuration can impact the performance of MATLAB. The
64-bit processor requirement enables you to create the mxArray and access
data in it. However, your system’s memory, in particular the size of RAM
and virtual memory, determine the speed at which MATLAB processes the
mxArray. The more memory available, the faster the processing.

The amount of RAM also limits the amount of data you can process at one
time in MATLAB. For guidance on memory issues, see “Strategies for Efficient
Use of Memory”. Memory management within source MEX-files can have
special considerations, as described in “Memory Management” on page 4-47.

Using the 64-Bit API
The signatures of the API functions shown in the following table use the
mwSize or mwIndex types to work with a 64-bit mxArray. The variables you
use in your source code to call these functions must be the correct type.

mxArray Functions Using mwSize/mwIndex

mxCalcSingleSubscript mxCreateSparseLogicalMatrix 2

mxCalloc mxCreateStructArray

mxCopyCharacterToPtr1 mxCreateStructMatrix

mxCopyComplex16ToPtr1 mxGetCell

mxCopyComplex8ToPtr1 mxGetDimensions

mxCopyInteger1ToPtr1 mxGetElementSize

mxCopyInteger2ToPtr1 mxGetField

mxCopyInteger4ToPtr1 mxGetFieldByNumber

5-27

5 Fortran MEX-Files

mxArray Functions Using mwSize/mwIndex (Continued)

mxCopyPtrToCharacter1 mxGetIr

mxCopyPtrToComplex161 mxGetJc

mxCopyPtrToComplex81 mxGetM

mxCopyPtrToInteger11 mxGetN

mxCopyPtrToInteger21 mxGetNumberOfDimensions

mxCopyPtrToInteger41 mxGetNumberOfElements

mxCopyPtrToPtrArray1 mxGetNzmax

mxCopyPtrToReal41 mxGetProperty

mxCopyPtrToReal81 mxGetString

mxCopyReal4ToPtr1 mxMalloc

mxCopyReal8ToPtr1 mxRealloc

mxCreateCellArray mxSetCell

mxCreateCellMatrix mxSetDimensions

mxCreateCharArray mxSetField

mxCreateCharMatrixFromStrings mxSetFieldByNumber

mxCreateDoubleMatrix mxSetIr

mxCreateLogicalArray2 mxSetJc

mxCreateLogicalMatrix2 mxSetM

mxCreateNumericArray mxSetN

mxCreateNumericMatrix mxSetNzmax

mxCreateSparse mxSetProperty

1Fortran function only

2C function only

Functions in this API use the mwIndex, mwSize, and mwPointer preprocessor
macros. For information about using these macros, see “Required Header
Files” on page 5-4.

5-28

Handling Large mxArrays

Building the Binary MEX-File
Use the mex build script option -largeArrayDims with the 64-bit API.

Caution Using Negative Values
When using the 64-bit API, mwSize and mwIndex are equivalent to INTEGER*8
in Fortran. This type is unsigned, unlike INTEGER*4, which is the type used in
the 32-bit API. Be careful not to pass any negative values to functions that
take mwSize or mwIndex arguments. Do not cast negative INTEGER*4 values to
mwSize or mwIndex; the returned value cannot be predicted. Instead, change
your code to avoid using negative values.

Building Cross-Platform Applications
If you develop cross-platform applications (programs that can run on both 32-
and 64-bit architectures), you must pay attention to the upper limit of values
you use for mwSize and mwIndex. The 32-bit application reads these values
and assigns them to variables declared as INTEGER*4 in Fortran. Be careful to
avoid assigning a large mwSize or mwIndex value to an INTEGER*4 or other
variable that might be too small.

5-29

5 Fortran MEX-Files

Memory Management
When a binary MEX-file returns control to MATLAB, it returns the results
of its computations in the output arguments—the mxArrays contained in the
left-hand side arguments plhs[]. MATLAB destroys any mxArray created by
the MEX-file that is not in this argument list. In addition, MATLAB frees any
memory that was allocated in the MEX-file using the mxCalloc, mxMalloc, or
mxRealloc functions.

Consequently, any misconstructed arrays left over at the end of a binary
MEX-file’s execution have the potential to cause memory errors.

MathWorks recommends that MEX-file functions destroy their own temporary
arrays and free their own dynamically allocated memory. It is more efficient
to perform this cleanup in the source MEX-file than to rely on the automatic
mechanism. For additional information on memory management techniques,
see the sections “Memory Management” on page 4-47 in Creating C/C++
Language MEX-Files and “Memory Management Issues” on page 3-97.

5-30

6

Calling MATLAB Engine
from C/C++ and Fortran
Programs

• “Using MATLAB Engine” on page 6-2

• “Call MATLAB Functions from C Applications” on page 6-6

• “Call MATLAB Functions from C++ Applications” on page 6-8

• “Call MATLAB Functions from Fortran Applications” on page 6-9

• “Attach to Existing MATLAB Sessions” on page 6-11

• “Compiling Engine Applications with MEX Command” on page 6-13

• “Compiling Engine Applications with IDE” on page 6-19

• “Troubleshooting Engine Applications” on page 6-23

6 Calling MATLAB® Engine from C/C++ and Fortran Programs

Using MATLAB Engine

In this section...

“Introduction to MATLAB Engine” on page 6-2

“What You Need to Build Engine Applications” on page 6-3

“The Engine Library” on page 6-4

“GUI-Intensive Applications” on page 6-5

Introduction to MATLAB Engine
The MATLAB engine library contains routines that allow you to call
MATLAB software from your own programs, thereby employing MATLAB as
a computation engine. You must use an installed version of MATLAB; you
cannot run the MATLAB engine on a machine that only has the MATLAB
Compiler Runtime (MCR).

Engine programs are standalone C/C++ or Fortran programs that
communicate with a separate MATLAB process via pipes, on UNIX systems,
and through a Microsoft Component Object Model (COM) interface, on
Microsoft Windows systems. MATLAB provides a library of functions that
allows you to start and end the MATLAB process, send data to and from
MATLAB, and send commands to be processed in MATLAB.

Some of the things you can do with the MATLAB engine are:

• Call a math routine, for example, to invert an array or to compute an FFT
from your own program. When employed in this manner, MATLAB is a
powerful and programmable mathematical subroutine library.

• Build an entire system for a specific task, for example, radar signature
analysis or gas chromatography, where the front end (GUI) is programmed
in C/C++ and the back end (analysis) is programmed in MATLAB, which
can shorten development time.

The MATLAB engine operates by running in the background as a separate
process from your own program. This offers several advantages:

6-2

Using MATLAB® Engine

• On UNIX systems, the engine can run on your machine, or on any other
UNIX machine on your network, including machines of a different
architecture. This allows you to implement a user interface on your
workstation and perform the computations on a faster machine located
elsewhere on your network. For more information, see the engOpen
reference page.

• Instead of requiring your program to link to the entire MATLAB program
(a substantial amount of code), it links to a smaller engine library.

The MATLAB engine cannot read MAT-files in a format based on HDF5.
These are MAT-files saved using the -v7.3 option of the save function or
opened using the w7.3 mode argument to the C or Fortran matOpen function.

Note To run MATLAB engine on the UNIX platform, you must have the
C shell csh installed at /bin/csh.

What You Need to Build Engine Applications
To create an engine application, you need the tools and knowledge to modify
and build source code in C/C++ or Fortran. In particular, you need a compiler
supported by MATLAB. For an up-to-date list of supported compilers, see the
Supported and Compatible Compilers Web page.

In your application, use functions in the MATLAB C/C++ and Fortran API:

• “The Engine Library” on page 6-4

• MX Matrix Library

To build the application, use the mex build script with the compiler-specific
engine options file. For more information, see “Compiling Engine Applications
with MEX Command” on page 6-13. You can also use your own build tools, as
described in “Compiling Engine Applications with IDE” on page 6-19.

6-3

http://www.mathworks.com/support/compilers/current_release/

6 Calling MATLAB® Engine from C/C++ and Fortran Programs

The Engine Library
The engine library is part of the MATLAB C/C++ and Fortran API. It contains
routines for controlling the computation engine. The function names begin
with the three-letter prefix eng.

MATLAB libraries are not thread-safe. If you create multithreaded
applications, make sure only one thread accesses the engine application.

C Engine Routines

Function Purpose

engOpen Start up MATLAB engine

engClose Shut down MATLAB engine

engGetVariable Get a MATLAB array from the engine

engPutVariable Send a MATLAB array to the engine

engEvalString Execute a MATLAB command

engOutputBuffer Create a buffer to store MATLAB text output

engOpenSingleUse Start a MATLAB engine session for single,
nonshared use

engGetVisible Determine visibility of MATLAB engine session

engSetVisible Show or hide MATLAB engine session

Fortran Engine Routines

Function Purpose

engOpen Start up MATLAB engine

engClose Shut down MATLAB engine

engGetVariable Get a MATLAB array from the engine

engPutVariable Send a MATLAB array to the engine

engEvalString Execute a MATLAB command

engOutputBuffer Create a buffer to store MATLAB text output

6-4

Using MATLAB® Engine

Engine programs also use the MX Matrix Library in the C/C++ and Fortran
API. For more information about this library, see “Introducing MEX-Files”
on page 3-2.

Communicating with MATLAB Software
On UNIX systems, the engine library communicates with the engine using
pipes, and, if needed, rsh for remote execution. On Microsoft Windows
systems, the engine library communicates with the engine using a Component
Object Model (COM) interface. For more information, see “MATLAB COM
Integration” on page 9-2.

GUI-Intensive Applications
If you have graphical user interface (GUI) intensive applications that execute
a lot of callbacks through the MATLAB engine, you should force these
callbacks to be evaluated in the context of the base workspace. Use evalin to
specify that the base workspace be used in evaluating the callback expression,
as follows:

engEvalString(ep, "evalin('base', expression)")

Specifying the base workspace in this manner ensures MATLAB processes
the callback correctly and returns results for that call.

This does not apply to computational applications that do not execute
callbacks.

6-5

6 Calling MATLAB® Engine from C/C++ and Fortran Programs

Call MATLAB Functions from C Applications
The program engdemo.c, in the matlabroot/extern/examples/eng_mat
folder, illustrates how to call the engine functions from a standalone
C program. For the Microsoft Windows version of this program, see
engwindemo.c.

To see engdemo.c, open this file in MATLAB Editor.

To see the Windows version engwindemo.c, open this file.

The first part of this program launches MATLAB and sends it data. MATLAB
analyzes the data and plots the results.

The program continues with:

Press Return to continue

Pressing Return continues the program:

Done for Part I.
Enter a MATLAB command to evaluate. This command should
create a variable X. This program will then determine
what kind of variable you created.
For example: X = 1:5

6-6

Call MATLAB® Functions from C Applications

Entering X = 17.5 continues the program execution.

X = 17.5

X =

17.5000

Retrieving X...
X is class double
Done!

Finally, the program frees memory, closes the MATLAB engine, and exits.

6-7

6 Calling MATLAB® Engine from C/C++ and Fortran Programs

Call MATLAB Functions from C++ Applications
There is a C++ version of engdemo in the
matlabroot\extern\examples\eng_mat folder. To see engdemo.cpp,
open this file.

6-8

Call MATLAB® Functions from Fortran Applications

Call MATLAB Functions from Fortran Applications
The program fengdemo.F, in the matlabroot/extern/examples/eng_mat
folder, illustrates how to call the engine functions from a standalone Fortran
program. To see the code, open this file.

Executing this program launches MATLAB, sends it data, and plots the
results.

The program continues with:

Type 0 <return> to Exit
Type 1 <return> to continue

Entering 1 at the prompt continues the program execution:

1
MATLAB computed the following distances:

time(s) distance(m)
1.00 -4.90
2.00 -19.6
3.00 -44.1
4.00 -78.4
5.00 -123.
6.00 -176.

6-9

6 Calling MATLAB® Engine from C/C++ and Fortran Programs

7.00 -240.
8.00 -314.
9.00 -397.
10.0 -490.

Finally, the program frees memory, closes the MATLAB engine, and exits.

6-10

Attach to Existing MATLAB® Sessions

Attach to Existing MATLAB Sessions
On a Windows platform, you can attach an engine program to a MATLAB
session that is already running by starting the MATLAB session with
/Automation in the command line. When you call engOpen, it connects to this
existing session. You should only call engOpen once, because any engOpen
calls now connect to this one MATLAB session.

The /Automation option also causes the command window to be minimized.
You must open it manually.

Note For more information on the /Automation command-line argument,
see “Launch MATLAB as Automation Server in Desktop Mode” on page
11-17. For information about the Component Object Model interfaces used by
MATLAB, see “MATLAB COM Integration” on page 9-2.

For example,

1 Shut down any MATLAB sessions.

2 From the Start button on the Windows menu bar, click Run.

3 In the Open field, type:

d:\matlab\bin\win32\matlab.exe /Automation

or:

d:\matlab\bin\win64\matlab.exe /Automation

where d:\matlab\bin\win32 or d:\matlab\bin\win64 represents the
path to the MATLAB executable.

4 Click OK. This starts MATLAB.

5 In MATLAB, change directories to
matlabroot/extern/examples/eng_mat.

6 Compile the engwindemo.c example.

6-11

6 Calling MATLAB® Engine from C/C++ and Fortran Programs

7 Run the engwindemo program by typing at the MATLAB prompt:

!engwindemo

This does not start another MATLAB session, but rather uses the MATLAB
session that is already open.

Note On the UNIX platform, you cannot make an engine program connect to
an existing MATLAB session.

6-12

Compiling Engine Applications with MEX Command

Compiling Engine Applications with MEX Command

In this section...

“Requirements to Build and Run Engine Applications” on page 6-13

“Building and Running Engine Applications on Windows Operating
Systems” on page 6-14

“Windows Engine Example engwindemo” on page 6-16

“Building and Running Engine Applications on UNIX Operating Systems”
on page 6-17

“UNIX Engine Example engdemo” on page 6-18

Requirements to Build and Run Engine Applications
To create an engine application, you need to build with an options file and
set the run-time library path. The following topics describe these general
requirements. For platform-specific informations, see “Building and Running
Engine Applications on Windows Operating Systems” on page 6-14 or
“Building and Running Engine Applications on UNIX Operating Systems”
on page 6-17.

Building With the Engine Options File
Use the mex function to compile and link engine applications. MATLAB
provides an options file containing compiler-specific flags that correspond to
the general compile, prelink, and link steps required by your development
tools. The name of the options file depends on your operating system and
which compiler you use. For Windows systems, see “Engine Options Files on
Windows” on page 6-14. On UNIX systems, the options file is engopts.sh in
the matlabroot/bin folder.

The format of the build command is:

mex('-f',fullfile(optionsPath,optionsName),fileName);

where fileName is the name of your C/C++ or Fortran source file, and
optionsPath and optionsName make up the full file name of the options file.

6-13

6 Calling MATLAB® Engine from C/C++ and Fortran Programs

Alternatively, copy the options file to your current working folder, and then
enter a command like:

mex -f optionsName fileName

Run-Time Requirements
At run time, tell the operating system where the MATLAB API shared
libraries reside by setting the run-time library Path environment variable. For
instructions, see “Setting Run-Time Library Path on Windows” on page 6-15
or “Setting Run-Time Library Path on Linux and Macintosh” on page 6-17.

If you have multiple versions of MATLAB installed on your system, the
version you use to build your engine applications must be the first listed in
your system Path environment variable. Otherwise, MATLAB displays Can't
start MATLAB engine. For information about setting the Path variable,
see “Setting Run-Time Library Path on Windows” on page 6-15 or “Setting
Run-Time Library Path on Linux and Macintosh” on page 6-17.

Building and Running Engine Applications on
Windows Operating Systems
The following topics describe what you need to know to create engine
applications. For an example, see “Windows Engine Example engwindemo”
on page 6-16.

• “Engine Options Files on Windows” on page 6-14

• “Setting Run-Time Library Path on Windows” on page 6-15

• “Registering MATLAB Software as a COM Server” on page 6-15

Engine Options Files on Windows
The name of the options file is *engmatopts.bat, where * is a string
representing the compiler name and version. To identify the options files
on your system, type:

dir(fullfile(matlabroot,...
'bin',computer('arch'),'mexopts','*engmatopts.bat'))

6-14

Compiling Engine Applications with MEX Command

The Name and Version properties of a mex.CompilerConfiguration object
can help you select an options file. Type:

cc = mex.getCompilerConfigurations('any','supported');

For example, for a cc object with the following properties, chose the
msvc90engmatopts.bat options file.

Properties:
Name: 'Microsoft Visual C++ 2008'

Manufacturer: 'Microsoft'
Language: 'C++'
Version: '9.0'

Location: 'c:\Program Files (x86)\Microsoft Visual Studio 9.0'
Details: [1x1 mex.CompilerConfigurationDetails]

Setting Run-Time Library Path on Windows
Set the Path environment variable to the path string returned by the following
MATLAB command:

fullfile(matlabroot,'bin',computer('arch'))

To set an environment variable on Windows XP, select
Start > Settings > Control Panel > System. The System
Properties dialog box appears. Click the Advanced tab, and then click the
Environment Variables button.

In the System variables panel scroll down until you find the Path variable.
Click this variable to highlight it, and then click the Edit button to open
the Edit System Variable dialog box. At the end of the path string, enter a
semicolon. Then, enter the path string that MATLAB returns after evaluating
the expression shown above. Click OK in the Edit System Variable dialog box,
and in all remaining dialog boxes.

Registering MATLAB Software as a COM Server
To run the engine application on a Windows operating system, you need to
register MATLAB as a COM server. Do this for every session, to ensure
that the current version of MATLAB is the registered version. If you run

6-15

6 Calling MATLAB® Engine from C/C++ and Fortran Programs

older versions, the registered version could change. If there is a mismatch of
version numbers, MATLAB displays Can't start MATLAB engine.

To manually register MATLAB as a server, type:

cd(fullfile(matlabroot,'bin',computer('arch')))
!matlab /regserver

Close the MATLAB window that appears.

Windows Engine Example engwindemo
To verify the build process on your computer, use the C example
engwindemo.c.

1 Copy the file to your current working folder:

copyfile(fullfile(matlabroot,...
'extern','examples','eng_mat','engwindemo.c'),...
'.', 'f');

2 Build the executable file. If you are using a Microsoft Visual C++ compiler,
select the appropriate options file, as described in “Engine Options Files on
Windows” on page 6-14. If you selected the Lcc compiler, type:

mex('-v', '-f', fullfile(matlabroot,...
'bin','win32','mexopts','lccengmatopts.bat'),...
'engwindemo.c');

Note Use the Lcc or a Microsoft Visual C++ compiler to build
engwindemo.exe. The source code in engwindemo.c is not supported for
the Open Watcom compiler.

3 Verify that the build worked by looking in your current working folder
for the engwindemo.exe file:

dir engwindemo.exe

4 Run the example from MATLAB:

6-16

Compiling Engine Applications with MEX Command

!engwindemo

For more information about the engwindemo application, see “Call MATLAB
Functions from C Applications” on page 6-6.

Building and Running Engine Applications on UNIX
Operating Systems
The following topics describe what you need to know to create engine
applications. For an example, see “UNIX Engine Example engdemo” on page
6-18.

• “Engine Options File on UNIX” on page 6-17

• “Setting Run-Time Library Path on Linux and Macintosh” on page 6-17

Engine Options File on UNIX
On UNIX systems, the options file is:

engopts.sh

and the path is:

fullfile(matlabroot,'bin')

Setting Run-Time Library Path on Linux and Macintosh
The UNIX command you use and the value you provide to set the run-time
library path depend on your shell and system architecture. The following
table lists the name of the environment variable, envvar, and the values,
pathspec, to assign to it.

Operating
System envvar pathspec

64-bit Linux LD_LIBRARY_PATH matlabroot/bin/glnxa64:
matlabroot/sys/os/glnxa64

64-bit Apple
Macintosh
(Intel)

DYLD_LIBRARY_PATH matlabroot/bin/maci64:
matlabroot/sys/os/maci64

6-17

6 Calling MATLAB® Engine from C/C++ and Fortran Programs

C Shell. Set the library path using the command:

setenv envvar pathspec

Bourne Shell. Set the library path using the command:

envvar = pathspec:envvar export envvar

UNIX Engine Example engdemo
To verify the build process on your computer, use the C example engdemo.c
or the C++ example engdemo.cpp.

1 Copy one of the programs, for example, engdemo.c, to your current working
folder:

copyfile(fullfile(matlabroot,...
'extern','examples','eng_mat','engdemo.c'),...
'.', 'f');

2 Build the executable file:

mex('-v', '-f', fullfile(matlabroot,...
'bin','engopts.sh'),...
'engdemo.c');

3 Verify that the build worked by looking in your current working folder
for the engdemo application:

dir engdemo

4 Run the example in MATLAB:

!engdemo

For more information about the engdemo applications, see “Call MATLAB
Functions from C Applications” on page 6-6.

6-18

Compiling Engine Applications with IDE

Compiling Engine Applications with IDE

In this section...

“Configuring the IDE” on page 6-19

“Files Required by Engine Applications” on page 6-19

Configuring the IDE
If your integrated development environment (IDE) has a MATLAB-supported
compiler, you can use the IDE to build engine applications. For an up-to-date
list of supported compilers, see the Supported and Compatible Compilers
Web page.

Engine applications require the Engine Library libeng, the MX Matrix
Library libmx, and supporting include files, described in “Files Required by
Engine Applications” on page 6-19. When you build using the mex command,
MATLAB is configured to locate these files. When you build in your IDE, you
must configure the IDE to locate them. Where these settings are depends on
your IDE. Refer to your product documentation.

This section provides information on how to build in an IDE, such as Microsoft
Visual Studio. It is not inclusive and assumes that you know how to use the
IDE. If you need more information, refer to your product documentation. It
helps to be familiar with the information in “Compiling Engine Applications
with MEX Command” on page 6-13. Use this information to build an
example to make sure the process works. Then configure your IDE with the
information from the engine options file.

MathWorks provides Technical Support solutions for configuring specific
IDEs. For using Microsoft Visual Studio, see 1-78077S. For using Macintosh
Xcode, see 1-4CKF73.

Files Required by Engine Applications

• “Specifying Engine Include Files” on page 6-20

• “Specifying Engine Libraries” on page 6-20

6-19

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/solutions/data/1-78077S.html?solution=1-78077S
http://www.mathworks.com/support/solutions/data/1-4CKF73.html?solution=1-4CKF73

6 Calling MATLAB® Engine from C/C++ and Fortran Programs

• “Specifying Library Files Required by libeng” on page 6-21

• “Specifying ICU Data Files” on page 6-21

Specifying Engine Include Files
Header files contain function declarations with prototypes for the routines
you access in the API libraries. These files are the same for both Windows
and UNIX systems. Engine applications use:

• engine.h — function prototypes for engine routines

• matrix.h — definition of the mxArray structure and function prototypes
for matrix access routines

In your IDE, set the pre-processor include path to the value returned by the
following MATLAB command:

fullfile(matlabroot, 'extern', 'include')

Specifying Engine Libraries
You need the libeng and libmx shared libraries. The name of the file is
platform-specific, as shown in the following table.

Library File Names by Operating System

Windows Linux Macintosh (Intel)

libeng.dll libeng.so libeng.dylib

libmx.dll libmx.so libmx.dylib

Add these library names to your IDE configuration. Set the library path to
the value returned by the following MATLAB command:

fullfile(matlabroot,'bin',computer('arch'))

Refer to your IDE product documentation for instructions. For example, see
Technical Support solution 1-78077S.

6-20

http://www.mathworks.com/support/solutions/data/1-78077S.html?solution=1-78077S

Compiling Engine Applications with IDE

Specifying Library Files Required by libeng
The libeng library requires additional third-party library files. MATLAB
uses these libraries to support Unicode character encoding and data
compression in MAT-files.

These library files must reside in the same folder as the libmx library. You
can determine what these libraries are using the platform-specific commands
shown in the following table. Once you identify these files, update your IDE,
following the instructions in “Specifying Engine Libraries” on page 6-20.

Library Dependency Commands

Windows Linux Macintosh

See the following
instructions for
Dependency Walker

ldd -d libeng.so otool -L
libeng.dylib

On Windows systems, to find library dependencies, use the third-party
product Dependency Walker. Dependency Walker is a free utility that scans
any 32-bit or 64-bit Windows module and builds a hierarchical tree diagram
of all dependent modules. For each module found, it lists all the functions
that are exported by that module, and which of those functions are called by
other modules. Download the Dependency Walker utility from the following
Web site:

http://www.dependencywalker.com/

See the Technical Support solution 1-2RQL4L at
http://www.mathworks.com/support/solutions/data/1-2RQL4L.html for
information on using the Dependency Walker.

Drag and drop the libeng.dll file into the Depends window. Identify the
dependent libraries and add them to your IDE configuration, following the
instructions in “Specifying Engine Libraries” on page 6-20.

Specifying ICU Data Files
Verify that the appropriate ICU data file is installed. The ICU file name is:

icudtver.dat

6-21

http://www.dependencywalker.com/

http://www.mathworks.com/support/solutions/data/1-2RQL4L.html

6 Calling MATLAB® Engine from C/C++ and Fortran Programs

where ver is a version-specific integer. The ICU file path is:

fullfile(matlabroot,'bin',computer('arch'))

To update your IDE, follow the instructions in “Specifying Engine Libraries”
on page 6-20.

Note If you need to manipulate Unicode text directly in your
application, the latest version of International Components for Unicode
(ICU) is available online from the IBM Corporation Web site at
http://icu.sourceforge.net/download.

6-22

http://icu.sourceforge.net/download

Troubleshooting Engine Applications

Troubleshooting Engine Applications

In this section...

“Can’t Start MATLAB Engine Message” on page 6-23

“Debugging MATLAB Functions Used in Engine Applications” on page 6-23

Can’t Start MATLAB Engine Message
If you have multiple versions of MATLAB installed on your system, the
version you use to build your engine applications must be the first listed in
your system Path environment variable. Otherwise, MATLAB displays Can't
start MATLAB engine. For information about setting the Path variable,
see “Setting Run-Time Library Path on Windows” on page 6-15 or “Setting
Run-Time Library Path on Linux and Macintosh” on page 6-17.

On Windows operating systems, you also need to register MATLAB as a COM
server. If you have multiple versions of MATLAB, the version you are using
must be the registered version. For instructions, see “Registering MATLAB
Software as a COM Server” on page 6-15.

Debugging MATLAB Functions Used in Engine
Applications
When creating MATLAB functions for use in engine applications, it is good
practice to debug the functions in MATLAB before calling them via the engine
interface.

Although you cannot use the MATLAB Editor/Debugger from an engine
application, you can use the MATLAB workspace to examine variables passed
to MATLAB. For example, you have the following MATLAB function:

function y=myfcn(x)
y=x+2;
end

Your engine application calls myfcn with your variable mycmxarray, as shown
in the following code:

6-23

6 Calling MATLAB® Engine from C/C++ and Fortran Programs

engPutVariable(ep, "aVar", mycmxarray);
engEvalString(ep, "result = myfcn(aVar)");
mycmxarrayResult = engGetVariable(ep,"result");

If you do not get the expected result, you can examine two possibilities: if the
input, mycmxarray, is incorrect, or if the MATLAB function is incorrect.

To examine the input to myfcn, first modify the function to save the MATLAB
workspace to the file debugmyfcn.mat.

function y=myfcn(x)
save debugmyfcn.mat
y=x+2;
end

Execute your engine application, then start MATLAB and load
debugmyfcn.mat.

load debugmyfcn.mat
whos x

Variable x contains the value from mycmxarray. If x is not what you expect,
debug your engine code. If x is correct, debug the MATLAB function. To
debug myfcn, open the function in the MATLAB Editor/Debugger, and then
call the function from the MATLAB command line:

myfcn(x)

6-24

7

Using Java Libraries from
MATLAB

• “Overview of Java Interface” on page 7-2

• “Bringing Java Classes into MATLAB Workspace” on page 7-4

• “Creating and Using Java Objects” on page 7-13

• “Invoking Methods on Java Objects” on page 7-21

• “Working with Java Arrays” on page 7-30

• “Passing Data to Java Methods” on page 7-48

• “Handling Data Returned from Java Methods” on page 7-59

• “Read URL” on page 7-66

• “Find Internet Protocol Address” on page 7-69

• “Create and Use Phone Book” on page 7-71

7 Using Java® Libraries from MATLAB®

Overview of Java Interface

In this section...

“Java Interface Is Integral to MATLAB” on page 7-2

“Benefits of the MATLAB Java Interface” on page 7-2

“Who Should Use the MATLAB Java Interface” on page 7-2

“To Learn More About Java Programming Language” on page 7-3

“Platform Support for JVM Software” on page 7-3

Java Interface Is Integral to MATLAB
Every installation of MATLAB includes Java Virtual Machine (JVM)
software, so that you can use the Java interpreter via MATLAB commands,
and you can create and run programs that create and access Java objects.
For information on the MATLAB installation, see the MATLAB installation
documentation for your platform.

Benefits of the MATLAB Java Interface
The MATLAB Java interface enables you to:

• Access Java API (application programming interface) class packages that
support essential activities such as I/O and networking. For example, the
URL class provides convenient access to resources on the Internet.

• Access third-party Java classes

• Easily construct Java objects in MATLAB workspace

• Call Java object methods, using either Java or MATLAB syntax

• Pass data between MATLAB variables and Java objects

Who Should Use the MATLAB Java Interface
The MATLAB Java interface is intended for all MATLAB users who want to
take advantage of the special capabilities of the Java programming language.

7-2

Overview of Java® Interface

For example:

• You need to access, from MATLAB, the capabilities of available Java
classes.

• You are familiar with object-oriented programming in Java or in another
language, such as C++.

• You are familiar with the MATLAB Class System, or with MEX-files.

To Learn More About Java Programming Language
For a complete description of the Java language and for guidance in
object-oriented software design and programming, you’ll need to consult
outside resources.

Platform Support for JVM Software
To find out which version of JVM software is used by MATLAB on your
platform, type the following at the MATLAB prompt:

version -java

7-3

7 Using Java® Libraries from MATLAB®

Bringing Java Classes into MATLAB Workspace

In this section...

“Introduction” on page 7-4

“Sources of Java Classes” on page 7-4

“Defining New Java Classes” on page 7-5

“The Java Class Path” on page 7-5

“Making Java Classes Available in MATLAB Workspace” on page 7-8

“Loading Java Class Definitions” on page 7-10

“Simplifying Java Class Names” on page 7-10

“Locating Native Method Libraries” on page 7-11

“Java Classes Contained in a JAR File” on page 7-12

Introduction
You can draw from an extensive collection of existing Java classes or create
your own class definitions to use with MATLABThis section explains how to
go about finding the class definitions that you need or how to create classes
of your own design. Once you have the classes you need, defined in either
individual .class files, packages, or Java Archive (JAR) files, you can make
them available in the MATLAB workspace. This section also describes how to
specify the native method libraries used by Java code.

Sources of Java Classes
Following are Java class sources that you can use in the MATLAB workspace:

• Java built-in classes — general-purpose class packages, such as java.util,
included in the Java language. See your Java language documentation
for descriptions of these packages.

• Third-party classes — packages of special-purpose Java classes.

• User-defined classes — Java classes or subclasses of existing classes that
you define. You need to use a Java language development environment to
do this, as explained in the following section.

7-4

Bringing Java® Classes into MATLAB® Workspace

Defining New Java Classes
To define new Java classes and subclasses of existing classes, you must
use a Java language development environment external to MATLAB. For
information on supported versions of the Java Development Kit (JDK™)
software, see the Supported and Compatible Compilers Web page.

After you create class definitions in .java files, use your Java compiler to
produce .class files from them. The next step is to make the class definitions
in those .class files available for you to use in MATLAB.

The Java Class Path
MATLAB loads Java class definitions from files that are on the Java class
path. The class path is a series of file and directory specifications that
MATLAB uses to locate class definitions. When loading a particular Java
class, MATLAB searches files and directories in the order they occur on the
class path until a file is found that contains that class definition. The search
ends when the first definition is found.

The Java class path consists of two segments: the static path and the dynamic
path. MATLAB loads the static path at startup. If you change the path you
must restart MATLAB. You can load and modify the dynamic path at any
time using MATLAB functions. MATLAB always searches the static path
before the dynamic path.

Note Java classes on the static path should not have dependencies on classes
on the dynamic path.

7-5

http://www.mathworks.com/support/compilers/current_release/

7 Using Java® Libraries from MATLAB®

You can view these two path segments using the javaclasspath function:

javaclasspath

STATIC JAVA PATH

D:\Sys0\Java\util.jar
D:\Sys0\Java\widgets.jar
D:\Sys0\Java\beans.jar

.

.

DYNAMIC JAVA PATH

C:\Work\Java\ClassFiles
C:\Work\Java\mywidgets.jar

.

.

You probably want to use both the static and dynamic paths:

• Put the Java class definitions that are more stable on the static class
path. Classes defined on the static path load somewhat faster than those
on the dynamic path.

• Put the Java class definitions that you are likely to modify on the dynamic
class path. You can make changes to the class definitions on this path
without restarting MATLAB.

The Static Path
MATLAB loads the static class path at the start of each session. The static
path offers better class loading performance than the dynamic path. To
add folders to the static path, create the file javaclasspath.txt, and then
restart MATLAB.

Create an ASCII file in your preferences folder named javaclasspath.txt.
To view the location of the preferences folder, type:

prefdir

7-6

Bringing Java® Classes into MATLAB® Workspace

Each line in the file is the path name of a directory or jar file. For example:

d:\work\javaclasses

To simplify the specification of directories in cross-platform environments,
use any of these macros: $matlabroot, $arch, and $jre_home.

You can also create a javaclasspath.txt file in your MATLAB startup
folder. Classes specified in this file override classes specified in the
javaclasspath.txt file in the preferences folder.

To disable using the javaclasspath.txt file, execute MATLAB with the
-nouserjavapath option.

Note MATLAB reads the static class path only at startup. If you edit
javaclasspath.txt or change your .class files while MATLAB is running,
you must restart MATLAB to put those changes into effect.

The Dynamic Path
The dynamic class path can be loaded any time during a MATLAB session
using the javaclasspath function. You can define the dynamic path (using
javaclasspath), modify the path (using javaaddpath and javarmpath), and
refresh the Java class definitions for all classes on the dynamic path (using
clear with the keyword java) without restarting MATLAB.

The functions javaaddpath and javaclasspath(dpath) add entries to the
dynamic class path. To avoid the possibility that the new path contains a class
or package with the same name as an existing class or package, MATLAB
clears all existing global variables and variables in the workspace.

Although the dynamic path offers more flexibility in changing the path,
Java classes on the dynamic path might load more slowly than those on the
static path.

7-7

7 Using Java® Libraries from MATLAB®

Making Java Classes Available in MATLAB
Workspace
To make your third-party and user-defined Java classes available in the
MATLAB workspace, place them on either the static or dynamic Java class
path, as described in the previous section, “The Java Class Path” on page 7-5.

• For classes you want on the static path, edit the javaclasspath.txt file.

• For classes you want on the dynamic path, use either the javaclasspath
or the javaaddpath functions.

Making Individual (Unpackaged) Classes Available
To make individual classes (classes that are not part of a package) available
in MATLAB, specify the full path to the directory you want to use for the
.class file(s).

For example, to make available your compiled Java classes in the file
d:\work\javaclasses\test.class, add the following entry to the static
or dynamic class path:

d:\work\javaclasses

To put this directory on the static class path, edit the javaclasspath.txt
file, described in “The Static Path” on page 7-6.

To put this on the dynamic class path, use the following command:

javaaddpath d:\work\javaclasses

Making Entire Packages Available
To access one or more classes belonging to a package, you need to make the
entire package available to MATLAB. To do this, specify the full path to
the parent directory of the highest level directory of the package path. This
directory is the first component in the package name.

7-8

Bringing Java® Classes into MATLAB® Workspace

For example, if your Java class package com.mw.tbx.ini has its classes in
directory d:\work\com\mw\tbx\ini, add the following directory to your static
or dynamic class path:

d:\work

Making Classes in a JAR File Available
You can use the jar (Java Archive) tool to create a JAR file, containing
multiple Java classes and packages in a compressed ZIP format. For
information on jar and JAR files, consult your Java development
documentation.

To make the contents of a JAR file available for use in MATLAB, specify
the full path, including full file name, for the JAR file. You can also put the
JAR file on the MATLAB path.

Note The path name requirement for JAR files is different than that for
.class files and packages, for which you do not specify any filename.

For example, to make available the JAR file e:\java\classes\utilpkg.jar,
add the following file specification to your static or dynamic class path:

e:\java\classes\utilpkg.jar

Loading a Class Using Java Class.forName Method
Use the javaObjectEDT function instead of the Java Class.forName method.
For example, replace the following statement:

java.lang.Class.forName('xyz.myapp.MyClass')

with:

javaObjectEDT('xyz.myapp.MyClass')

7-9

7 Using Java® Libraries from MATLAB®

Loading Java Class Definitions
Normally, MATLAB loads a Java class automatically when your code first
uses it, (for example, when you call its constructor). However, there is one
exception you should be aware of.

When you use the which function on methods defined by Java classes,
the function only acts on the classes currently loaded into the MATLAB
workspace. In contrast, which always operates on MATLAB classes, whether
or not they are loaded.

Determining Which Classes Are Loaded
At any time during a MATLAB session, you can obtain a listing of all the Java
classes that are currently loaded. To do so, use the inmem function as follows:

[M,X,J] = inmem

This function returns the list of Java classes in the output argument J. (It
also returns the names of all currently loaded MATLAB functions in M, and
the names of all currently loaded MEX-files in X.)

Here’s a sample of output from the inmem function:

[m,x,j] = inmem;

MATLAB displays:

j =
'java.util.Date'
'com.mathworks.ide.desktop.MLDesktop'

Simplifying Java Class Names
Your MATLAB commands can refer to any Java class by its fully qualified
name, which includes its package name. For example, the following are fully
qualified names:

• java.lang.String

• java.util.Enumeration

7-10

Bringing Java® Classes into MATLAB® Workspace

A fully qualified name can be long, making commands and functions, such
as constructors, cumbersome to edit and to read. You can refer to classes by
the class name alone (without a package name) if you first import the fully
qualified name into MATLAB.

MATLAB adds all classes that you import to a list called the import list.
You can see what classes are on that list by typing import, without any
arguments. Your code can refer to any class on the list by class name alone.

When called from a function, import adds the specified classes to the import
list in effect for that function. When invoked at the command prompt, import
uses the base import list for your MATLAB environment.

For example, suppose a function contains the following statements:

import java.lang.String
import java.util.* java.awt.*
import java.util.Enumeration

Any code that follows these import statements can refer to the String, Frame,
and Enumeration classes without using the package names. For example:

str = String('hello'); % Create java.lang.String object
frm = Frame; % Create java.awt.Frame object
methods Enumeration % List java.util.Enumeration methods

To remove the list of imported Java classes, type:

clear import

Locating Native Method Libraries
Java classes can dynamically load native methods using the Java method
java.lang.System.loadLibrary("LibFile"). In order for the JVM software
to locate the specified library file, the directory containing it must be on the
Java Library Path. This path is established when the MATLAB launches
the JVM software at startup.

You can augment the search path for native method libraries by creating
an ASCII text file named javalibrarypath.txt in your preferences folder.
Follow these guidelines when editing this file:

7-11

7 Using Java® Libraries from MATLAB®

• Specify each new directory on a line by itself.

• Specify only the directory names, not the names of the DLL files. The
loadLibrary call does this for you.

• To simplify the specification of directories in cross-platform environments,
use any of these macros: $matlabroot, $arch, and $jre_home.

You can also create a javalibrarypath.txt file in your MATLAB startup
folder. Libraries specified in this file override libraries specified in the
javalibrarypath.txt file in the preferences folder.

To disable using the javalibrarypath.txt file, execute MATLAB with the
-nouserjavapath option.

Java Classes Contained in a JAR File
You can access Java classes that are contained in a JAR file once you have
added the JAR file to either the static or dynamic class path. See “The Java
Class Path” on page 7-5 for more information on how MATLAB uses the
Java class path.

For example, suppose you have a file, myArchive.jar, in a directory called
work in your MATLAB root directory. You can construct the path to this
file using the matlabroot command:

[matlabroot '/work/myArchive.jar']

Add the JAR file to your dynamic class path using the javaaddpath function
(fullfile adds the platform-correct directory separators):

javaaddpath(fullfile(matlabroot,'work','myArchive.jar'))

You can now call the public methods in the JAR file.

7-12

Creating and Using Java® Objects

Creating and Using Java Objects

In this section...

“Overview” on page 7-13

“Constructing Java Objects” on page 7-13

“Concatenating Java Objects” on page 7-16

“Saving and Loading Java Objects to MAT-Files” on page 7-17

“Finding the Public Data Fields of an Object” on page 7-18

“Accessing Private and Public Data” on page 7-18

“Determining the Class of an Object” on page 7-20

Overview
You create a Java object in the MATLAB workspace by calling one of the
constructors of that class. You then use commands and programming
statements to perform operations on these objects. You can also save your
Java objects to a MAT-file and, in subsequent sessions, reload them into
MATLAB.

Constructing Java Objects
You construct Java objects in the MATLAB workspace by calling the Java
class constructor, which has the same name as the class. For example, the
following constructor creates a myDate object:

myDate = java.util.Date

myDate =
Thu Aug 23 12:58:54 EDT 2007

MATLAB displays information for your system.

Using the javaObjectEDT Function
Under certain circumstances, you might need to use the javaObjectEDT
function to construct a Java object. The following syntax invokes the Java

7-13

7 Using Java® Libraries from MATLAB®

constructor for class, class_name, with the argument list that matches
x1,...,xn, and returns a new object, J.

J = javaObjectEDT('class_name',x1,...,xn);

For example, to construct and return a Java object of class java.lang.String,
type:

strObj = javaObjectEDT('java.lang.String','hello');

With the javaObjectEDT function you can:

• Use classes that have names that exceed the maximum length of a
MATLAB identifier. (Call the namelengthmax function to obtain the
maximum identifier length.)

• Specify the class for an object at run-time, for example, as input from an
application user

The default MATLAB constructor syntax requires that no segment of the
input class name be longer than namelengthmax characters. (A class name
segment is any portion of the class name before, between, or after a dot.
For example, there are three segments in class, java.lang.String.) Any
class name segment that exceeds namelengthmax characters is truncated by
MATLAB. In the rare case where you need to use a class name of this length,
you must use javaObjectEDT to instantiate the class.

The javaObjectEDT function also allows you to specify the Java class
for the object being constructed at run-time. In this situation, you call
javaObjectEDT with a string variable in place of the class name argument.

class = 'java.lang.String';
text = 'hello';
strObj = javaObjectEDT(class, text);

In the usual case, when the class to instantiate is known at development time,
it is more convenient to use the MATLAB constructor syntax. For example, to
create a java.lang.String object, type:

strObj = java.lang.String('hello');

7-14

Creating and Using Java® Objects

Use the javaObjectEDT function instead of the Java Class.forName method.
For example, replace the following statement:

java.lang.Class.forName('xyz.myapp.MyClass')

with:

javaObjectEDT('xyz.myapp.MyClass')

Note Typically, you do not need to use javaObjectEDT. The default MATLAB
syntax for instantiating a Java class is somewhat simpler and is preferable
for most applications. Use javaObjectEDT primarily for the previously
described cases.

Java Objects Are References in MATLAB Applications
In MATLAB, Java objects are references and do not adhere to MATLAB
copy-on-assignment and pass-by-value rules. For example:

myDate = java.util.Date;
setHours(myDate,10)
newDate = myDate;

In this example, the variable newDate is a reference to myDate, not a copy of
the object. Any change to the object referenced by newDate also changes the
object at myDate. This happens if the object is changed by MATLAB code
or by Java code.

The following example shows that myDate and newDate are references to the
same object. When you change the hour via one reference (newDate), the
change is reflected through the other reference (myDate), as well.

setHours(newDate,8)
myDate.getHours

ans =
8

7-15

7 Using Java® Libraries from MATLAB®

Concatenating Java Objects
You can concatenate Java objects in the same way that you concatenate native
MATLAB types. You use either the cat function or the [] operators to tell
MATLAB to assemble the enclosed objects into a single object.

Concatenating Objects of the Same Class
If all of the objects being operated on are of the same Java class, the
concatenation of those objects produces an array of objects from the same
class.

In the following example, the cat function concatenates two objects of the
class java.awt.Integer. The class of the result is also java.awt.Integer.

value1 = java.lang.Integer(88);
value2 = java.lang.Integer(45);
cat(1, value1, value2)

ans =
java.lang.Integer[]:

[88]
[45]

Concatenating Objects of Unlike Classes
When you concatenate objects of unlike classes, MATLAB finds one class
from which all of the input objects inherit, and makes the output an instance
of this class. MATLAB selects the lowest common parent in the Java class
hierarchy as the output class.

For example, concatenating objects of java.lang.Byte, java.lang.Integer,
and java.lang.Double creates an object of java.lang.Number, since this is
the common parent to the three input classes.

byte = java.lang.Byte(127);
integer = java.lang.Integer(52);
double = java.lang.Double(7.8);
[byte; integer; double]

ans =

7-16

Creating and Using Java® Objects

java.lang.Number[]:
[127]
[52]
[7.8000]

If there is no common, lower level parent, then the resultant class is
java.lang.Object, which is the root of the entire Java class hierarchy.

byte = java.lang.Byte(127);
point = java.awt.Point(24,127);
[byte; point]

ans =
java.lang.Object[]:

[127]
[1x1 java.awt.Point]

Saving and Loading Java Objects to MAT-Files
Use the save function to save a Java object to a MAT-file. Use the load
function to load it back into MATLAB from that MAT-file. To save a Java
object to a MAT-file, and to load the object from the MAT-file, make sure that
the object and its class meet all of the following criteria:

• The class implements the Serializable interface (part of the Java API),
either directly or by inheriting it from a parent class. Any embedded or
otherwise referenced objects must also implement Serializable.

• The definition of the class is not changed between saving and loading the
object. Any change to the data fields or methods of a class prevents the
loading (deserialization) of an object that was constructed with the old
class definition.

• Either the class does not have any transient data fields, or the values in
transient data fields of the object to be saved are not significant. Values in
transient data fields are never saved with the object.

If you define your own Java classes, or subclasses of existing classes, you can
follow the criteria above to enable objects of the class to be saved and loaded
in MATLAB. For details on defining classes to support serialization, consult
your Java development documentation.

7-17

7 Using Java® Libraries from MATLAB®

Finding the Public Data Fields of an Object
To list the public fields that belong to a Java object, use the fieldnames
function, which takes either of these forms.

names = fieldnames(obj)
names = fieldnames(obj,'-full')

Calling fieldnames without -full returns the names of all the data fields
(including inherited) on the object. With the -full qualifier, fieldnames
returns the full description of the data fields defined for the object, including
type, attributes, and inheritance information.

For example, create an Integer object with the command:

value = java.lang.Integer(0);

To see a full description of the data fields of value, type:

fieldnames(value,'-full')

ans =
'static final int MIN_VALUE'
'static final int MAX_VALUE'
'static final java.lang.Class TYPE'
'static final int SIZE'

Accessing Private and Public Data
Java API classes provide accessor methods you can use to read from and,
where allowed, to modify private data fields. These are sometimes referred to
as get and set methods, respectively.

Some Java classes have public data fields, which your code can read or modify
directly. To access these fields, use the syntax object.field.

Examples
The java.awt.Frame class provides an example of access to both private and
public data fields. This class has the read accessor method getSize, which
returns a java.awt.Dimension object. The Dimension object has data fields
height and width, which are public and therefore directly accessible. For
example, to access this data, type:

7-18

Creating and Using Java® Objects

frame = java.awt.Frame;
frameDim = getSize(frame);
height = frameDim.height;
frameDim.width = 42;

The programming examples in this chapter also contain calls to data field
accessors. For instance, the sample code for “Find Internet Protocol Address”
on page 7-69 uses calls to accessors on a java.net.InetAddress object.

hostname = address.getHostName;
ipaddress = address.getHostAddress;

Accessing Data from a Static Field
In a Java language program, a static data field is a field that applies to an
entire class of objects. Static fields are most commonly accessed in relation
to the class name itself. For example, the following code accesses the TYPE
field of the Integer class by referring to it in relation to the package and class
names, java.lang.Integer, rather than an object instance.

thisType = java.lang.Integer.TYPE;

In MATLAB, you can use that same syntax. Or you can refer to the TYPE
field in relation to an instance of the class. The following example creates an
instance of java.lang.Integer called value, and then accesses the TYPE field
using the name value rather than the package and class names.

value = java.lang.Integer(0);
thatType = value.TYPE

thatType =
int

Assigning to a Static Field
You can assign values to static fields by using a static set method of the class,
or by making the assignment in reference to an instance of the class. For
more information, see “Accessing Data from a Static Field” on page 7-19. You
can assign value to the field staticFieldName in the following example by
referring to this field in reference to an instance of the class.

objectName = java.className;

7-19

7 Using Java® Libraries from MATLAB®

objectName.staticFieldName = value;

Note MATLAB does not allow assignment to static fields using the class
name itself.

Determining the Class of an Object
To find the class of a Java object, use the query form of the class function.
After execution of the following example, myClass contains the name of the
package and class that the object value instantiates.

value = java.lang.Integer(0);
myClass = class(value)

myClass =
java.lang.Integer

Because this form of class also works on MATLAB objects, it does not, in
itself, tell you whether it is a Java class. To determine the type of class, use
the isjava function, which returns 1 if obj is a Java object, and 0 if it is
not. For example, type:

isjava(value)

ans =
1

To find out if an object is an instance of a specified class, use the isa function,
which returns 1 if the object is an instance of the class. The class can be a
MATLAB built-in or user-defined class, as well as a Java class. For example,
type:

isa(value, 'java.lang.Integer')

ans =
1

7-20

Invoking Methods on Java® Objects

Invoking Methods on Java Objects

In this section...

“Calling Syntax” on page 7-21

“Obtaining Information About Methods” on page 7-23

“Java Methods That Affect MATLAB Commands” on page 7-27

“How MATLAB Handles Undefined Methods” on page 7-28

“How MATLAB Handles Java Exceptions” on page 7-29

“Method Execution in MATLAB” on page 7-29

Calling Syntax

• “Java Calling Syntax” on page 7-21

• “MATLAB Calling Syntax” on page 7-22

• “Calling Syntax for Static Methods of Java Classes” on page 7-22

• “Using the javaMethod Function” on page 7-22

Java Calling Syntax
The Java syntax to call methods on Java objects:

object.method(arg1,...,argn)

In the following example, myDate is a java.util.Date object, and getHours
and setHours are methods of that object.

myDate = java.util.Date;
myDate.setHours(3)
myDate.getHours

ans =
3

7-21

7 Using Java® Libraries from MATLAB®

MATLAB Calling Syntax
The MATLAB syntax to call methods on Java objects:

method(object,arg1,...,argn)

The following example shows how to call the getHours and setHours methods
on a java.util.Date object.

mlDate = java.util.Date;
setHours(mlDate,3)
getHours(mlDate)

ans =
3

Calling Syntax for Static Methods of Java Classes
To invoke a static method on a Java class, use the Java syntax:

class.method(arg1,...,argn)

For example, call the static method, isNaN:

java.lang.Double.isNaN(2.2)

ans =
0

Using the javaMethod Function
The MATLAB javaMethod function enables you to:

• Use Java methods with names that exceed the maximum length of a
MATLAB identifier. (Call the namelengthmax function to obtain the
maximum identifier length.)

• Specify a Java method to invoke at run-time.

For example, your code calls javaMethod with a string variable in place of
the method argument. When you use javaMethod to invoke a static method,
you can also use a string variable in place of the class name argument.

7-22

Invoking Methods on Java® Objects

Note The MATLAB syntax is the preferred syntax for invoking a Java
method. Use javaMethod for these special cases only.

Obtaining Information About Methods
MATLAB provides functions to obtain information related to the Java
methods you are working with. You can request a list of all of the methods
that are implemented by any class. The list might be accompanied by other
method information such as argument types and exceptions. You can also
request a listing of every Java class that you loaded into MATLAB that
implements a specified method.

Methodsview: Displaying a Listing of Java Methods
If you want to know what methods are implemented by a particular Java
(or MATLAB) class, use the methodsview function. Specify the class name
(along with its package name, for Java classes) in the command line. If you
have imported the package that defines this class, then the class name alone
suffices.

The following command lists information on all methods in the
java.awt.MenuItem class. Type:

methodsview java.awt.MenuItem

7-23

7 Using Java® Libraries from MATLAB®

A new window appears, listing one row of information for each method in
the class.

Each row in the window displays up to six fields of information describing the
method. The following table lists the fields displayed in the methodsview
window along with a description and examples of each field type.

Fields Displayed in the Methodsview Window

Field Name Description Examples

Qualifiers Method type qualifiers abstract, synchronized

Return Type Type returned by the
method

void, java.lang.String

7-24

Invoking Methods on Java® Objects

Fields Displayed in the Methodsview Window (Continued)

Field Name Description Examples

Name Method name addActionListener,
dispatchEvent

Arguments Types of arguments
passed to method

boolean,
java.lang.Object

Other Other relevant
information

throws
java.io.IOException

Inherited From Parent of the specified
class

java.awt.MenuComponent

Using the Methods Function on Java Classes
The methods function returns information on methods of MATLAB and Java
classes.

Use methods without the '-full' qualifier to return the names of all the
methods (including inherited methods) of the class. Names of overloaded
methods are listed only once.

With the '-full' qualifier, methods returns a listing of the method names
(including inherited methods) along with attributes, argument lists, and
inheritance information on each. Each overloaded method is listed separately.

For example, display a full description of all methods of the
java.awt.Dimension object.

methods java.awt.Dimension -full

Methods for class java.awt.Dimension:
Dimension()
Dimension(java.awt.Dimension)
Dimension(int,int)
java.lang.Class getClass() % Inherited from java.lang.Object
int hashCode() % Inherited from java.lang.Object
boolean equals(java.lang.Object)
java.lang.String toString()

7-25

7 Using Java® Libraries from MATLAB®

void notify() % Inherited from java.lang.Object
void notifyAll() % Inherited from java.lang.Object
void wait(long) throws java.lang.InterruptedException

% Inherited from java.lang.Object
void wait(long,int) throws java.lang.InterruptedException

% Inherited from java.lang.Object
void wait() throws java.lang.InterruptedException

% Inherited from java.lang.Object
java.awt.Dimension getSize()
void setSize(java.awt.Dimension)
void setSize(int,int)

Determining What Classes Define a Method
You can use the which function to display the fully qualified name (package
and class name) of a method implemented by a loaded Java class. With the
-all qualifier, the which function finds all classes with a method of the
name specified.

Suppose, for example, that you want to find the package and class name for
the concatmethod, with the String class currently loaded. Use the command:

which concat
java.lang.String.concat % String method

If the java.lang.String class has not been loaded, the same which command
would give the output:

which concat
concat not found.

If you use which -all for the method equals, with the String and
java.awt.Frame classes loaded, you see the following display.

which -all equals
java.lang.String.equals % String method
java.awt.Frame.equals % Frame method
com.mathworks.ide.desktop.MLDesktop.equals % MLDesktop method

The which function operates differently on Java classes than it does on
MATLAB classes. MATLAB classes are always displayed by which, whether

7-26

Invoking Methods on Java® Objects

or not they are loaded. This is not true for Java classes. You can find out which
Java classes are currently loaded by using the command [m,x,j]=inmem,
described in “Determining Which Classes Are Loaded” on page 7-10.

For a description of how Java classes are loaded, see “Making Java Classes
Available in MATLAB Workspace” on page 7-8.

Java Methods That Affect MATLAB Commands
MATLAB commands that operate on Java objects and arrays make use of the
methods that are implemented within, or inherited by, these objects’ classes.
There are some MATLAB commands that you can alter somewhat in behavior
by changing the Java methods that they rely on.

Changing the Effect of disp and display
You can use the disp function to display the value of a variable or an
expression in MATLAB. Terminating a command line without a semicolon
also calls the disp function. You can also use disp to display a Java object
in MATLAB.

When disp operates on a Java object, MATLAB formats the output using the
toString method of the class to which the object belongs. If the class does
not implement this method, then an inherited toString method is used. If
no intermediate ancestor classes define this method, it uses the toString
method defined by the java.lang.Object class. You can override inherited
toString methods in classes that you create by implementing such a method
within your class definition. In this way, you can change the way MATLAB
displays information regarding the objects of the class.

Changing the Effect of isequal
The MATLAB isequal function compares two or more arrays for equality in
type, size, and contents. This function can also be used to test Java objects
for equality.

When you compare two Java objects using isequal, MATLAB performs the
comparison using the Java method, equals. MATLAB first determines the
class of the objects specified in the command, and then uses the equals
method implemented by that class. If it is not implemented in this class, then

7-27

7 Using Java® Libraries from MATLAB®

an inherited equals method is used. This is the equals method defined by
the java.lang.Object class if no intermediate ancestor classes define this
method.

You can override inherited equals methods in classes that you create by
implementing such a method within your class definition. In this way, you can
change the way MATLAB performs comparison of the members of this class.

Changing the Effect of double and char
You can also define your own Java methods toDouble and toChar to change
the output of the MATLAB double and char functions. For more information,
see “Converting to the MATLAB double Type” on page 7-61 and “Converting
to the MATLAB char Type” on page 7-62.

How MATLAB Handles Undefined Methods
If your MATLAB command invokes a nonexistent method on a Java object,
MATLAB looks for a function with the same name. If MATLAB finds a
function of that name, it attempts to invoke it. If MATLAB does not find a
function with that name, it displays a message stating that it cannot find a
method by that name for the class.

For example, MATLAB has a function named size, and the Java API
java.awt.Frame class also has a size method. If you call size on a Frame
object, the size method defined by java.awt.Frame is executed. However,
if you call size on an object of java.lang.String, MATLAB does not find a
size method for this class. It executes the MATLAB size function instead.

string = java.lang.String('hello');
size(string)

ans =
1 1

Note When you define a Java class for use in MATLAB, avoid giving any of
its methods the same name as a MATLAB function.

7-28

Invoking Methods on Java® Objects

How MATLAB Handles Java Exceptions
Use the matlab.exception.JavaException class to handle Java exceptions.

Method Execution in MATLAB
When calling a main method from MATLAB, the method returns as soon as it
executes its last statement, even if the method creates a thread that is still
executing. In other environments, the main method does not return until the
thread completes execution.

You, therefore, need to be cautious when calling mainmethods from MATLAB,
particularly main methods that launch GUIs. main methods are usually
written assuming they are the entry point to application code. When called
from MATLAB this is not the case, and the fact that other Java GUI code
might be already running can lead to problems.

7-29

7 Using Java® Libraries from MATLAB®

Working with Java Arrays

In this section...

“Introduction” on page 7-30

“How MATLAB Represents the Java Array” on page 7-30

“Creating an Array of Objects in MATLAB” on page 7-35

“Accessing Elements of a Java Array” on page 7-37

“Assigning to a Java Array” on page 7-41

“Concatenating Java Arrays” on page 7-44

“Creating a New Array Reference” on page 7-46

“Creating a Copy of a Java Array” on page 7-46

Introduction
You can pass singular Java objects to and from methods or you might pass
them in an array, providing the method expects them in that form. This
array must either be a Java array (returned from another method call or
created within the MATLAB) or, under certain circumstances, a MATLAB
cell array. This section describes how to create and manipulate Java arrays
in MATLAB. Later sections will describe how to use MATLAB cell arrays in
calls to Java methods.

Note The term dimension here refers more to the number of subscripts
required to address the elements of an array than to its length, width, and
height characteristics. For example, a 5-by-1 array is referred to as being
one-dimensional, as its individual elements can be indexed into using only
one array subscript.

How MATLAB Represents the Java Array
The term Java array refers to any array of Java objects returned from a call
to a Java class constructor or method. You may also construct a Java array
within MATLAB using the javaArray function. The structure of a Java array
is significantly different from that of a MATLAB matrix or array. MATLAB

7-30

Working with Java® Arrays

hides these differences whenever possible, allowing you to operate on the
arrays using the usual MATLAB command syntax. Just the same, it may be
helpful to keep the following differences in mind as you work with Java arrays.

Representing More Than One Dimension
An array in the Java language is strictly a one-dimensional structure because
it is measured only in length. If you want to work with a two-dimensional
array, you can create an equivalent structure using an array of arrays. To
add further dimensions, you add more levels to the array, making it an array
of arrays of arrays, and so on. You might want to use such multilevel arrays
when working in MATLAB as it is a matrix and array-based programming
language.

MATLAB makes it easy for you to work with multilevel Java arrays by
treating them like the matrices and multidimensional arrays that are a part
of the language itself. You access elements of an array of arrays using the
same MATLAB syntax that you use if you are handling a matrix. If you add
more levels to the array, MATLAB can access and operate on the structure as
if it is a multidimensional MATLAB array.

7-31

7 Using Java® Libraries from MATLAB®

The left side of the following figure shows Java arrays of one, two, and three
dimensions. To the right of each is the way the same array is represented
to you in MATLAB. Note that single-dimension arrays are represented as
a column vector.

Array Indexing
Java array indexing is different than MATLAB array indexing. Java array
indices are zero-based, MATLAB array indices are one-based. In Java
programming, you access the elements of array y of length N using y[0]

7-32

Working with Java® Arrays

through y[N-1]. When working with this array in MATLAB, you access these
same elements using the MATLAB indexing style of y(1) through y(N). Thus,
if you have a Java array of 10 elements, the seventh element is obtained using
y(7), and not y[6] as you use when writing a Java language program.

The Shape of the Java Array
A Java array can be different from a MATLAB array in its overall shape. A
two-dimensional MATLAB array maintains a rectangular shape, as each row
is of equal length and each column of equal height. The Java counterpart of
this, an array of arrays, does not necessarily hold to this rectangular form.
Each individual lower level array may have a different length.

Such an array structure is pictured below. This is an array of three underlying
arrays of different lengths. The terms jagged or ragged are commonly used to
describe this arrangement of array elements as the array ends do not match
up evenly. When a Java method returns an array with this type of structure,
it is stored in a cell array by MATLAB.

Interpreting the Size of a Java Array
When the MATLAB size function is applied to a simple Java array, the
number of rows returned is the length of the Java array and the number of
columns is always 1.

Determining the size of a Java array of arrays is not so simple. The potentially
ragged shape of an array returned from a Java method makes it impossible to
size the array in the same way as for a rectangular matrix. In a ragged Java
array, there is no one value that represents the size of the lower level arrays.

7-33

7 Using Java® Libraries from MATLAB®

When the size function is applied to a Java array of arrays, the resulting
value describes the top level of the specified array. For the Java array:

size(A) returns the dimensions of the highest array level of A. The highest
level of the array has a size of 3-by-1.

size(A)

ans =
3 1

To find the size of a lower level array, say the five-element array in row 3,
refer to the row explicitly.

size(A(3))

ans =
5 1

You can specify a dimension in the size command using the following syntax.
However, you will probably find this useful only for sizing the first dimension,
dim=1, as this will be the only non-unary dimension.

m = size(X,dim)
size(A, 1)

ans =
3

Interpreting the Number of Dimensions of a Java Arrays
For Java arrays, whether they are simple one-level arrays or multilevel, the
MATLAB ndims function always returns a value of 2 to indicate the number

7-34

Working with Java® Arrays

of dimensions in the array. This is a measure of the number of dimensions in
the top-level array, which always equals 2.

Creating an Array of Objects in MATLAB
To call a Java method that has one or more arguments defined as an array
of Java objects, you must, under most circumstances, pass your objects in a
Java array. You can construct an array of objects in a call to a Java method or
constructor. Or you can create the array within MATLAB.

The MATLAB javaArray function lets you create a Java array structure that
can be handled in MATLAB as a single multidimensional array. You specify
the number and size of the array dimensions along with the class of objects
you intend to store in it. Using the one-dimensional Java array as its primary
building block, MATLAB then builds an array structure that satisfies the
dimensions requested in the javaArray command.

Using the javaArray Function
To create a Java object array, use the MATLAB javaArray function, which
has the following syntax:

A = javaArray('element_class', m, n, p, ...)

The first argument is the 'element_class' string, which names the class of
the elements in the array. You must specify the fully qualified name (package
and class name). The remaining arguments (m, n, p, ...) are the number
of elements in each dimension of the array.

An array that you create with javaArray is equivalent to the array that you
create with the Java code.

A = new element_class[m][n][p]...;

The following command builds a Java array of four lower level arrays, each
capable of holding five objects of the java.lang.Double class.

dblArray = javaArray('java.lang.Double',4,5);

The javaArray function does not deposit any values into the array elements
that it creates. You must do this separately. The following MATLAB code

7-35

7 Using Java® Libraries from MATLAB®

stores objects of the java.lang.Double type in the Java array dblArray
that was just created.

for m = 1:4
for n = 1:5
dblArray(m,n) = java.lang.Double((m*10) + n);
end

end

dblArray

dblArray =
java.lang.Double[][]:

[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

Another Way to Create a Java Array
You can also create an array of Java objects using syntax that is more typical
to MATLAB. For example, the following syntax creates a 4-by-5 MATLAB
array of type double and assigns zero to each element of the array.

matlabArr(4,5) = 0;

You use similar syntax to create a Java array in MATLAB, except that
you must specify the Java class name. The value being assigned, 0 in this
example, is stored in the final element of the array, javaArr(4,5). All other
elements of the array receive the empty matrix.

javaArr(4,5) = java.lang.Double(0)

javaArr =
java.lang.Double[][]:

[] [] [] [] []
[] [] [] [] []
[] [] [] [] []
[] [] [] [] [0]

7-36

Working with Java® Arrays

Note You cannot change the dimensions of an existing Java array as you can
with a MATLAB array. The same restriction exists when working with Java
arrays in the Java language. See the example below.

This example first creates a scalar MATLAB array, and then successfully
modifies it to be two-dimensional.

matlabArr = 0;
matlabArr(4,5) = 0

matlabArr =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

When you try this with a Java array, you get an error message. Similarly, you
cannot create an array of Java arrays from a Java array, and so forth.

javaArr = java.lang.Double(0);
javaArr(4,5) = java.lang.Double(0);

Index exceeds Java array dimensions.

Accessing Elements of a Java Array
You can access elements of a Java object array by using the MATLAB array
indexing syntax, A(row,col). For example, to access the element of array
dblArray located at row 3, column 4, use:

row3_col4 = dblArray(3,4)

row3_col4 =
34.0

In a Java language program, this is dblArray[2][3].

You can also use MATLAB array indexing syntax to access an element in
an object’s data field. Suppose that myMenuObj is an instance of a window

7-37

7 Using Java® Libraries from MATLAB®

menu class. This user-supplied class has a data field, menuItemArray, which
is a Java array of java.awt.menuItem. To get element 3 of this array, use
the following command.

currentItem = myMenuObj.menuItemArray(3)

Using Single Subscript Indexing to Access Arrays
Elements of a MATLAB matrix are most commonly referenced using both row
and column subscripts. For example, you use x(3,4) to reference the array
element at the intersection of row 3 and column 4. Sometimes it is more
advantageous to use just a single subscript. MATLAB provides this capability
(see the section on “Linear Indexing” in MATLAB Mathematics).

Indexing into a MATLAB matrix using a single subscript references one
element of the matrix. Using the MATLAB matrix shown here, matlabArr (3)
returns a single element of the matrix.

matlabArr = [11 12 13 14 15; 21 22 23 24 25; ...
31 32 33 34 35; 41 42 43 44 45]

matlabArr =
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45

matlabArr(3)

ans =
31

Indexing this way into a Java array of arrays references an entire subarray of
the overall structure. Using the dblArray Java array, that looks the same as
matlabArr shown above, dblArray(3) returns the 5-by-1 array that makes
up the entire third row.

7-38

Working with Java® Arrays

row3 = dblArray(3)

row3 =
java.lang.Double[]:

[31]
[32]
[33]
[34]
[35]

This is a useful feature of MATLAB because it allows you to specify an entire
array from a larger array structure, and then manipulate it as an object.

Using the Colon Operator
Use of the MATLAB colon operator (:) is supported in subscripting Java
array references. This operator works just the same as when referencing the
contents of a MATLAB array. Using the Java array of java.lang.Double
objects shown here, the statement dblArray(2,2:4) refers to a portion of the
lower level array, dblArray(2). A new array, row2Array, is created from
the elements in columns 2 through 4.

dblArray

dblArray =
java.lang.Double[][]:

[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

row2Array = dblArray(2,2:4)

row2Array =
java.lang.Double[]:

[22]
[23]
[24]

You also can use the colon operator in single-subscript indexing, as covered in
“Using Single Subscript Indexing to Access Arrays” on page 7-38. By making

7-39

7 Using Java® Libraries from MATLAB®

your subscript a colon rather than a number, you can convert an array of
arrays into one linear array. The following example converts the 4-by-5 array
dblArray into a 20-by-1 linear array.

linearArray = dblArray(:)

linearArray =
java.lang.Double[]:

[11]
[12]
[13]
[14]
[15]
[21]
[22]
.
.
.

This works the same way on an N-dimensional Java array structure. Using
the colon operator as a single subscripted index into the array produces a
linear array composed of all of the elements of the original array.

Note Java and MATLAB arrays are stored differently in memory. This is
reflected in the order they are given in a linear array. Java array elements
are stored in an order that matches the rows of the matrix, (11, 12, 13, ... in
the array shown above). MATLAB array elements are stored in an order that
matches the columns, (11, 21, 31, ...).

Using END in a Subscript
You can use the end keyword in the first subscript of an access statement.
The first subscript references the top-level array in a multilevel Java array
structure.

7-40

Working with Java® Arrays

Note Using end on lower level arrays is not valid due to the potentially
ragged nature of these arrays (see “The Shape of the Java Array” on page
7-33). In this case, there is no consistent end value to be derived.

The following example displays data from the third to the last row of Java
array dblArray.

last2rows = dblArray(3:end, :)

last2rows =
java.lang.Double[][]:

[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

Assigning to a Java Array
You assign values to objects in a Java array in essentially the same way
as you do in a MATLAB array. Although Java and MATLAB arrays are
structured quite differently, you use the same command syntax to specify
which elements you want to assign to. See “Introduction” on page 7-30 for
more information on Java and MATLAB array differences.

The following example deposits the value 300 in the dblArray element at row
3, column 2. In a Java language program, this is dblArray[2][1].

dblArray(3,2) = java.lang.Double(300)

dblArray =
java.lang.Double[][]:

[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[31] [300] [33] [34] [35]
[41] [42] [43] [44] [45]

You use the same syntax to assign to an element in an object’s data field.
Continuing with the myMenuObj example shown in “Accessing Elements
of a Java Array” on page 7-37, you assign to the third menu item in
menuItemArray as follows.

myMenuObj.menuItemArray(3) = java.lang.String('Save As...');

7-41

7 Using Java® Libraries from MATLAB®

Using Single Subscript Indexing for Array Assignment
You can use a single-array subscript to index into a Java array structure that
has more than one dimension. Refer to “Using Single Subscript Indexing to
Access Arrays” on page 7-38 for a description of this feature as used with
Java arrays.

You can use single-subscript indexing to assign values to an array as well.
The example below assigns a one-dimensional Java array, onedimArray, to
a row of a two-dimensional Java array, dblArray. Start out by creating the
one-dimensional array.

onedimArray = javaArray('java.lang.Double', 5);
for k = 1:5

onedimArray(k) = java.lang.Double(100 * k);
end

Since dblArray(3) refers to the 5-by-1 array displayed in the third row
of dblArray, you can assign the entire, similarly dimensioned, 5-by-1
onedimArray to it.

dblArray(3) = onedimArray

dblArray =
java.lang.Double[][]:

[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[100] [200] [300] [400] [500]
[41] [42] [43] [44] [45]

Assigning to a Linear Array
You can assign a value to every element of a multidimensional Java array by
treating the array structure as if it were a single linear array. This entails
replacing the single, numerical subscript with the MATLAB colon operator. If
you start with the dblArray array, you can initialize the contents of every
object in the two-dimensional array with the following statement.

dblArray(:) = java.lang.Double(0)

dblArray =
java.lang.Double[][]:

7-42

Working with Java® Arrays

[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]

You can use the MATLAB colon operator as you would when working with
MATLAB arrays. The statements below assign given values to each of the
four rows in the Java array, dblArray. Remember that each row actually
represents a separate Java array in itself.

dblArray(1,:) = java.lang.Double(125);
dblArray(2,:) = java.lang.Double(250);
dblArray(3,:) = java.lang.Double(375);
dblArray(4,:) = java.lang.Double(500)

dblArray =
java.lang.Double[][]:

[125] [125] [125] [125] [125]
[250] [250] [250] [250] [250]
[375] [375] [375] [375] [375]
[500] [500] [500] [500] [500]

Assigning the Empty Matrix
When working with MATLAB arrays, you can assign the empty matrix, (that
is, the 0-by-0 array denoted by []) to an element of the array. For Java
arrays, you can also assign [] to array elements. This stores the NULL value,
rather than a 0-by-0 array, in the Java array element.

Subscripted Deletion
When you assign the empty matrix value to an entire row or column of a
MATLAB array, you find that MATLAB actually removes the affected row or
column from the array. In the example below, the empty matrix is assigned to
all elements of the fourth column in the MATLAB matrix, matlabArr. Thus,
the fourth column is completely eliminated from the matrix. This changes
its dimensions from 4-by-5 to 4-by-4.

7-43

7 Using Java® Libraries from MATLAB®

matlabArr = [11 12 13 14 15; 21 22 23 24 25; ...
31 32 33 34 35; 41 42 43 44 45]

matlabArr =
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45

matlabArr(:,4) = []

matlabArr =
11 12 13 15
21 22 23 25
31 32 33 35
41 42 43 45

You can assign the empty matrix to a Java array, but the effect is different.
The next example shows that, when the same operation is performed on a
Java array, the structure is not collapsed; it maintains its 4-by-5 dimensions.

dblArray(:,4) = []

dblArray =
java.lang.Double[][]:

[125] [125] [125] [] [125]
[250] [250] [250] [] [250]
[375] [375] [375] [] [375]
[500] [500] [500] [] [500]

The dblArray data structure is actually an array of five-element arrays of
java.lang.Double objects. The empty array assignment placed the NULL
value in the fourth element of each of the lower level arrays.

Concatenating Java Arrays
You can concatenate arrays of Java objects in the same way as arrays of other
types. Java objects, however, can only be catenated along the first or second
axis. To understand how scalar Java objects are concatenated in MATLAB,
see “Concatenating Java Objects” on page 7-16.

7-44

Working with Java® Arrays

Use either the cat function or the square bracket ([]) operators. This example
horizontally concatenates two Java arrays: d1 and d2.

% Construct a 2-by-3 array of java.lang.Double.
d1 = javaArray('java.lang.Double',2,3);
for m = 1:3 for n = 1:3
d1(m,n) = java.lang.Double(n*2 + m-1);
end; end;

d1

d1 =
java.lang.Double[][]:

[2] [4] [6]
[3] [5] [7]
[4] [6] [8]

% Construct a 2-by-2 array of java.lang.Double.
d2 = javaArray('java.lang.Double',2,2);
for m = 1:3 for n = 1:2
d2(m,n) = java.lang.Double((n+3)*2 + m-1);
end; end;

d2

d2 =
java.lang.Double[][]:

[8] [10]
[9] [11]
[10] [12]

% Concatenate the two along the second dimension.
d3 = cat(2,d1,d2)

d3 =
java.lang.Double[][]:

[2] [4] [6] [8] [10]
[3] [5] [7] [9] [11]
[4] [6] [8] [10] [12]

7-45

7 Using Java® Libraries from MATLAB®

Creating a New Array Reference
Because Java arrays in MATLAB are references, assigning an array variable
to another variable results in a second reference to the array.

Consider the following example where two separate array variables reference
a common array. The original array, origArray, is created and initialized.
The statement newArrayRef = origArray creates a copy of this array
variable. Changes made to the array referred to by newArrayRef also show up
in the original array.

origArray = javaArray('java.lang.Double', 3, 4);
for m = 1:3

for n = 1:4
origArray(m,n) = java.lang.Double((m * 10) + n);

end
end

origArray

origArray =
java.lang.Double[][]:

[11] [12] [13] [14]
[21] [22] [23] [24]
[31] [32] [33] [34]

%----- Make a copy of the array reference -----
newArrayRef = origArray;
newArrayRef(3,:) = java.lang.Double(0);

origArray

origArray =
java.lang.Double[][]:

[11] [12] [13] [14]
[21] [22] [23] [24]
[0] [0] [0] [0]

Creating a Copy of a Java Array
You can create an entirely new array from an existing Java array by indexing
into the array to describe a block of elements, (or subarray), and assigning

7-46

Working with Java® Arrays

this subarray to a variable. The assignment copies the values in the original
array to the corresponding cells of the new array.

As with the example in section “Creating a New Array Reference” on page
7-46, an original array is created and initialized. But, this time, a copy is
made of the array contents rather than copying the array reference. Changes
made using the reference to the new array do not affect the original.

origArray = javaArray('java.lang.Double', 3, 4);
for m = 1:3

for n = 1:4
origArray(m,n) = java.lang.Double((m * 10) + n);

end
end

origArray

origArray =
java.lang.Double[][]:

[11] [12] [13] [14]
[21] [22] [23] [24]
[31] [32] [33] [34]

% ----- Make a copy of the array contents -----
newArray = origArray(:,:);
newArray(3,:) = java.lang.Double(0);

origArray

origArray =
java.lang.Double[][]:

[11] [12] [13] [14]
[21] [22] [23] [24]
[31] [32] [33] [34]

7-47

7 Using Java® Libraries from MATLAB®

Passing Data to Java Methods

In this section...

“Introduction” on page 7-48

“Conversion of MATLAB Argument Data” on page 7-48

“Passing Built-In Types” on page 7-50

“Passing String Arguments” on page 7-51

“Passing Java Objects” on page 7-52

“Other Data Conversion Topics” on page 7-55

“Passing Data to Overloaded Methods” on page 7-56

Introduction
When you make a call in MATLAB to Java code, any MATLAB types
you pass in the call are converted to types native to the Java language.
MATLAB performs this conversion on each argument that is passed, except
for those arguments that are already Java objects. This section describes the
conversion that is performed on specific MATLAB types and, at the end, also
takes a look at how argument types affect calls made to overloaded methods.

If data is to be returned by the method being called, MATLAB receives this
data and converts it to the appropriate MATLAB format wherever necessary.
This process is covered in “Handling Data Returned from Java Methods”
on page 7-59.

Conversion of MATLAB Argument Data
MATLAB data, passed as arguments to Java methods, are converted by
MATLAB into types that best represent the data to the Java language. The
table below shows all of the MATLAB base types for passed arguments and
the Java base types defined for input arguments. Each row shows a MATLAB
type followed by the possible Java argument matches, from left to right in
order of closeness of the match. The MATLAB types (except cell arrays) can
all be scalar (1-by-1) arrays or matrices. All of the Java types can be scalar
values or arrays.

7-48

Passing Data to Java® Methods

Conversion of MATLAB Types to Java Types

MATLAB
Argument

Closest
Type (7) Java Input Argument (Scalar or Array)

Least
Close
Type
(1)

logical boolean byte short int long float double

double double float long int short byte boolean

single float double N/A N/A N/A N/A N/A

char String char N/A N/A N/A N/A N/A

uint8 byte short int long float double N/A

uint16 short int long float double N/A N/A

uint32 int long float double N/A N/A N/A

int8 byte short int long float double N/A

int16 short int long float double N/A N/A

int32 int long float double N/A N/A N/A

cell array of
strings

array of
String

N/A N/A N/A N/A N/A N/A

Java object Object N/A N/A N/A N/A N/A N/A

cell array of
object

array of
Object

N/A N/A N/A N/A N/A N/A

MATLAB
object

N/A N/A N/A N/A N/A N/A N/A

Type conversion of arguments passed to Java code are discussed in the
following three categories. MATLAB handles each category differently.

• “Passing Built-In Types” on page 7-50

• “Passing String Arguments” on page 7-51

• “Passing Java Objects” on page 7-52

7-49

7 Using Java® Libraries from MATLAB®

Passing Built-In Types
The Java language has eight types that are intrinsic to the language and are
not represented as Java objects. These are often referred to as built-in, or
elemental, types and they include boolean, byte, short, long, int, double,
float, and char. MATLAB converts its own types to these Java built-in types
according to the table, Conversion of MATLAB® Types to Java® Types on page
7-49. Built-in types are in the first 10 rows of the table.

When a Java method you are calling expects one of these types, you can pass
it the type of MATLAB argument shown in the left-most column of the table.
If the method takes an array of one of these types, you can pass a MATLAB
array of the type. MATLAB converts the type of the argument to the type
assigned in the method declaration.

The MATLAB code shown below creates a top-level window frame and sets
its dimensions. The call to setBounds passes four MATLAB scalars of the
double type to the inherited Java Frame method, setBounds, that takes four
arguments of the int type. MATLAB converts each 64-bit double type to a
32-bit integer prior to making the call. Shown here is the setBounds method
declaration followed by the MATLAB code that calls the method.

public void setBounds(int x, int y, int width, int height)

frame=java.awt.Frame;
frame.setBounds(200,200,800,400);
frame.setVisible(1);

Passing Built-In Types in an Array
To call a Java method with an argument defined as an array of a built-in type,
you can create and pass a MATLAB matrix with a compatible base type. The
following code defines a polygon by sending four x and y coordinates to the
Polygon constructor. Two 1-by-4 MATLAB arrays of double are passed to
java.awt.Polygon, which expects integer arrays in the first two arguments.
Shown here is the Java method declaration followed by MATLAB code that
calls the method, and then verifies the set coordinates.

7-50

Passing Data to Java® Methods

public Polygon(int xpoints[], int ypoints[], int npoints)

poly = java.awt.Polygon([14 42 98 124], [55 12 -2 62], 4);
[poly.xpoints poly.ypoints] % Verify the coordinates
ans =
14 55
42 12
98 -2
124 62

MATLAB Arrays Are Passed by Value
Since MATLAB arrays are passed by value, any changes that a Java method
makes to them are not visible to your MATLAB code. If you need to access
changes that a Java method makes to an array, then, rather than passing
a MATLAB array, you should create and pass a Java array, which is a
reference. For a description of using Java arrays in MATLAB, see “Working
with Java Arrays” on page 7-30.

Note Generally, it is preferable to have methods return data that has been
modified using the return argument mechanism as opposed to passing a
reference to that data in an argument list.

Passing String Arguments
To call a Java method that has an argument defined as an object of class
java.lang.String, you can pass either a String object that was returned
from an earlier Java call or a MATLAB 1-by-n character array. If you
pass the character array, MATLAB converts the array to a Java object of
java.lang.String for you.

For a programming example, see “Read URL” on page 7-66. This shows a
MATLAB character array that holds a URL being passed to the Java URL class
constructor. The constructor, shown below, expects a Java String argument.

public URL(String spec) throws MalformedURLException

7-51

7 Using Java® Libraries from MATLAB®

In the MATLAB call to this constructor, a character array specifying the
URL is passed. MATLAB converts this array to a Java String object prior to
calling the constructor.

url = java.net.URL(...
'http://archive.ncsa.uiuc.edu/demoweb/')

Passing Strings in an Array
When the method you are calling expects an argument of an array of type
String, you can create such an array by packaging the strings together
in a MATLAB cell array. The strings can be of varying lengths since you
are storing them in different cells of the array. As part of the method call,
MATLAB converts the cell array to a Java array of String objects.

In the following example, the echoPrompts method of a user-written class
accepts a string array argument that MATLAB converted from its original
format as a cell array of strings. The parameter list in the Java method
appears as follows:

public String[] echoPrompts(String s[])

You create the input argument by storing both strings in a MATLAB cell
array. MATLAB converts this structure to a Java array of String.

myaccount.echoPrompts({'Username: ','Password: '})
ans =
'Username: '
'Password: '

Passing Java Objects
When calling a method that has an argument belonging to a particular Java
class, you must pass an object that is an instance of that class. In the example
below, the add method belonging to the java.awt.Menu class requires, as an
argument, an object of the java.awt.MenuItem class. The method declaration
for this is:

public MenuItem add(MenuItem mi)

The example operates on the frame created in the previous example in
“Passing Built-In Types” on page 7-50. The second, third, and fourth lines of

7-52

Passing Data to Java® Methods

code shown here add items to a menu to be attached to the existing window
frame. In each of these calls to menu1.add, an object that is an instance of the
java.awt.MenuItem Java class is passed.

menu1 = java.awt.Menu('File Options');
menu1.add(java.awt.MenuItem('New'));
menu1.add(java.awt.MenuItem('Open'));
menu1.add(java.awt.MenuItem('Save'));

menuBar=java.awt.MenuBar;
menuBar.add(menu1);
frame.setMenuBar(menuBar);

Handling Objects of Class java.lang.Object
A special case exists when the method being called takes an argument of
the java.lang.Object class. Since this class is the root of the Java class
hierarchy, you can pass objects of any class in the argument. The following
hash table example passes objects belonging to different classes to a common
method, put, which expects an argument of java.lang.Object. The method
declaration for put is:

public synchronized Object put(Object key, Object value)

The following MATLAB code passes objects of different types (boolean, float,
and string) to the put method.

hTable = java.util.Hashtable;
hTable.put(0, java.lang.Boolean('TRUE'));
hTable.put(1, java.lang.Float(41.287));
hTable.put(2, java.lang.String('test string'));

hTable % Verify hash table contents
hTable =
{1.0=41.287, 2.0=test string, 0.0=true}

When passing arguments to a method that takes java.lang.Object, it is not
necessary to specify the class name for objects of a built-in type. Line 3, in the
example above, specifies that 41.287 is an instance of class java.lang.Float.
You can omit this and simply say, 41.287, as shown in the following example.

7-53

7 Using Java® Libraries from MATLAB®

Thus, MATLAB creates each object for you, choosing the closest matching
Java object representation for each argument.

The three calls to put from the preceding example can be rewritten as:

hTable.put(0, 1);
hTable.put(1, 41.287);
hTable.put(2, 'test string');

Passing Objects in an Array
The only types of object arrays that you can pass to Java methods are Java
arrays and MATLAB cell arrays. MATLAB automatically converts the cell
array elements to java.lang.Object class objects. Note that in order for
a cell array to be passed from MATLAB, the corresponding argument in
the Java method signature must specify java.lang.Object or an array of
java.lang.Object.

If the objects are already in a Java array, either an array returned from a
Java constructor or constructed in MATLAB by the javaArray function, then
you simply pass it as the argument to the method being called. No conversion
is done by MATLAB, because the argument is already a Java array.

The following example shows the mapPoints method of a user-written class
accepting an array of java.awt.Point objects. The declaration for this
method is:

public Object mapPoints(java.awt.Point p[])

The MATLAB code shown below creates a 4-by-1 array containing four
Java Point objects. When the array is passed to the mapPoints method, no
conversion is necessary because the javaArray function created a Java array
of java.awt.Point objects.

pointObj = javaArray('java.awt.Point',4);
pointObj(1) = java.awt.Point(25,143);
pointObj(2) = java.awt.Point(31,147);
pointObj(3) = java.awt.Point(49,151);
pointObj(4) = java.awt.Point(52,176);

testData.mapPoints(pointObj);

7-54

Passing Data to Java® Methods

Handling a Cell Array of Java Objects
You create a cell array of Java objects by using the MATLAB syntax
{a1,a2,...}. You index into a cell array of Java objects in the usual way,
with the syntax a{m,n,...}.

The following example creates a cell array of two Frame objects, frame1 and
frame2, and assigns it to variable frameArray.

frame1 = java.awt.Frame('Frame A');
frame2 = java.awt.Frame('Frame B');

frameArray = {frame1, frame2}

frameArray =
[1x1 java.awt.Frame] [1x1 java.awt.Frame]

The next statement assigns element {1,2} of the cell array frameArray to
variable f.

f = frameArray {1,2}

f =
java.awt.Frame[frame2,0,0,0x0,invalid,hidden,layout =
java.awt.BorderLayout,resizable,title=Frame B]

Other Data Conversion Topics
There are several remaining items of interest regarding the way MATLAB
converts its data to a compatible Java type. This includes how MATLAB
matches array dimensions, and how it handles empty matrices and empty
strings.

How Array Dimensions Affect Conversion
The term dimension refers to the number of subscripts required to address the
elements of an array. For example, a 5-by-1 array has one dimension, because
you can index individual elements using only one array subscript.

In converting MATLAB to Java arrays, MATLAB handles dimension in a
special manner. For a MATLAB array, dimension can be considered as the
number of nonsingleton dimensions in the array. For example, a 10-by-1
array has dimension 1, and a 1-by-1 array has dimension 0. In Java code,

7-55

7 Using Java® Libraries from MATLAB®

dimension is determined solely by the number of nested arrays. For example,
double[][] has dimension 2, and double has dimension 0.

If the Java array’s number of dimensions exactly matches the MATLAB
array’s number of dimensions n, the conversion results in a Java array with n
dimensions. If the Java array has fewer than n dimensions, the conversion
drops singleton dimensions, starting with the first one, until the number of
remaining dimensions matches the number of dimensions in the Java array.

Empty Matrices and Nulls
The empty matrix is compatible with any method argument for which NULL
is a legal value in the Java language. The empty string ('') in MATLAB
translates into an empty (not NULL) String object in Java code.

Passing Data to Overloaded Methods
When you invoke an overloaded method on a Java object, MATLAB
determines which method to invoke by comparing the arguments your call
passes to the arguments defined for the methods. Note that in this discussion,
the term method includes constructors. When it determines the method to
call, MATLAB converts the calling arguments to Java method types according
to Java conversion rules, except for conversions involving objects or cell
arrays. See “Passing Objects in an Array” on page 7-54.

How MATLAB Determines the Method to Call
When your MATLAB function calls a Java method, MATLAB:

1 Checks to make sure that the object (or class, for a static method) has a
method by that name.

2 Determines whether the invocation passes the same number of arguments
of at least one method with that name.

3 Makes sure that each passed argument can be converted to the Java type
defined for the method.

If all of the preceding conditions are satisfied, MATLAB calls the method.

7-56

Passing Data to Java® Methods

In a call to an overloaded method, if there is more than one candidate,
MATLAB selects the one with arguments that best fit the calling arguments.
First, MATLAB rejects all methods that have any argument types that are
incompatible with the passed arguments (for example, if the method has a
double argument and the passed argument is a char).

Among the remaining methods, MATLAB selects the one with the highest
fitness value, which is the sum of the fitness values of all its arguments.
The fitness value for each argument is the fitness of the base type minus
the difference between the MATLAB array dimension and the Java array
dimension. (Array dimensionality is explained in “How Array Dimensions
Affect Conversion” on page 7-55.) If two methods have the same fitness, the
first one defined in the Java class is chosen.

Example — Calling an Overloaded Method
Suppose a function constructs a java.io.OutputStreamWriter object, osw,
and then invokes a method on the object.

osw.write('Test data', 0, 9);

MATLAB finds that the class java.io.OutputStreamWriter defines three
write methods.

public void write(int c);
public void write(char[] cbuf, int off, int len);
public void write(String str, int off, int len);

MATLAB rejects the first write method, because it takes only one argument.
Then, MATLAB assesses the fitness of the remaining two write methods.
These differ only in their first argument, as explained below.

In the first of these two write methods, the first argument is defined with
base type, char. The table, Conversion of MATLAB® Types to Java® Types
on page 7-49, shows that for the type of the calling argument (MATLAB
char), Java type, char, has a value of 6. There is no difference between the
dimension of the calling argument and the Java argument. So the fitness
value for the first argument is 6.

In the other write method, the first argument has Java type String, which
has a fitness value of 7. The dimension of the Java argument is 0, so the

7-57

7 Using Java® Libraries from MATLAB®

difference between it and the calling argument dimension is 1. Therefore, the
fitness value for the first argument is 6.

Because the fitness value of those two write methods is equal, MATLAB calls
the one listed first in the class definition, with char[] first argument.

7-58

Handling Data Returned from Java® Methods

Handling Data Returned from Java Methods

In this section...

“Introduction” on page 7-59

“Conversion of Java Return Types” on page 7-59

“Built-In Types” on page 7-60

“Java Objects” on page 7-60

“Converting Objects to MATLAB Types” on page 7-61

Introduction
In many cases, data returned from a Java method is incompatible with the
types operated on in the MATLAB environment. When this is the case,
MATLAB converts the returned value to a type native to the MATLAB
language. This section describes the conversion performed on the various
types that can be returned from a call to a Java method.

Conversion of Java Return Types
The following table lists Java return types and the resulting MATLAB types.
For some Java base return types, MATLAB treats scalar and array returns
differently, as described following the table.

Conversion of Java Types to MATLAB Types

Java Return Type

If Scalar Return,
Resulting MATLAB
Type

If Array Return,
Resulting MATLAB
Type

boolean logical logical

byte double int8

short double int16

int double int32

long double int64

float double single

7-59

7 Using Java® Libraries from MATLAB®

Conversion of Java Types to MATLAB Types (Continued)

Java Return Type

If Scalar Return,
Resulting MATLAB
Type

If Array Return,
Resulting MATLAB
Type

double double double

char char char

Note MATLAB converts rectangular Java arrays to arrays of the resulting
type. When Java returns a nonrectangular (jagged) array, MATLAB converts
it to a cell array. For more information, see “How MATLAB Represents the
Java Array” on page 7-30.

Built-In Types
Java built-in types are described in “Passing Built-In Types” on page 7-50.
This type includes boolean, byte, short, long, int, double, float, and char.
When the value returned from a method call is one of these types, MATLAB
converts it according to the table Conversion of Java® Types to MATLAB®

Types on page 7-59.

A single numeric or boolean value converts to a 1-by-1 matrix of double,
which is convenient for use in MATLAB. An array of a numeric or boolean
return values converts each member of the array to the closest base type to
minimize the required storage space. Array member conversions are listed in
the right-hand column of the table.

A return value of Java type char converts to a 1-by-1matrix of char. An array
of Java char converts to a MATLAB array of that type.

Java Objects
When a method call returns Java objects, MATLAB leaves them in their
original form. They remain as Java objects so you can continue to use them to
interact with other Java methods.

7-60

Handling Data Returned from Java® Methods

The only exception to this is when the method returns data of type
java.lang.Object. This class is the root of the Java class hierarchy and is
frequently used as a catchall for objects and arrays of various types. When the
method being called returns a value of the Object class, MATLAB converts its
value according to the table Conversion of Java® Types to MATLAB® Types on
page 7-59. That is, numeric and boolean objects such as java.lang.Integer
or java.lang.Boolean convert to a 1-by-1MATLAB matrix of double. Object
arrays of these types convert to the MATLAB types listed in the right-hand
column of the table. Other object types are not converted.

Converting Objects to MATLAB Types
With the exception of objects of class Object, MATLAB does not convert Java
objects returned from method calls to a native MATLAB type. If you want to
convert Java object data to a form more readily usable in MATLAB, there are
a few MATLAB functions that enable you to do this. These are described in
the following sections.

• “Converting to the MATLAB double Type” on page 7-61

• “Converting to the MATLAB char Type” on page 7-62

• “Converting to a MATLAB Structure” on page 7-63

• “Converting to a MATLAB Cell Array” on page 7-63

Converting to the MATLAB double Type
Using the double function in MATLAB, you can convert any Java object or
array of objects to the MATLAB double type. The action taken by the double
function depends on the class of the object you specify:

• If the object is an instance of a numeric class (java.lang.Number or one of
the classes that inherit from that class), MATLAB uses a preset conversion
algorithm to convert the object to a MATLAB double.

• If the object is not an instance of a numeric class, MATLAB checks the
class definition to see if it implements a method called toDouble. MATLAB
uses toDouble to perform its conversion of Java objects to the MATLAB
double type. If such a method is implemented for this class, MATLAB
executes it to perform the conversion.

7-61

7 Using Java® Libraries from MATLAB®

• If you are using a class of your own design, you can write your own
toDouble method to perform conversions on objects of that class to a
MATLAB double. This enables you to specify your own means of type
conversion for objects belonging to your own classes.

Note If the class of the specified object is not java.lang.Number, does not
inherit from that java.lang.Number, and does not implement a toDouble
method, then an attempt to convert the object using the double function
results in a MATLAB error message.

The syntax for the double command is as follows, where object is a Java
object or Java array of objects:

double(object);

Converting to the MATLAB char Type
With the MATLAB char function, you can convert java.lang.String objects
and arrays to MATLAB character arrays.

The syntax for the char command is as follows, where object is a Java object
or Java array of objects:

char(object);

If the object specified in the char command is not an instance of the
java.lang.String class, MATLAB checks its class to see if it implements
a method named toChar. If this is the case, MATLAB executes the toChar
method of the class to perform the conversion. If you write your own class
definitions, you can make use of this feature by writing a toChar method that
performs the conversion according to your own needs.

Note If the class of the specified object is not java.lang.String and it does
not implement a toChar method, an attempt to convert the object using the
char function results in a MATLAB error message.

7-62

Handling Data Returned from Java® Methods

Converting to a MATLAB Structure
Java objects are similar to the MATLAB struct type in that many of an
object’s characteristics are accessible via field names defined within the
object. You might want to convert a Java object into a MATLAB struct to
facilitate the handling of its data in MATLAB. Use the MATLAB struct
function to do this.

The syntax for the struct command is as follows, where object is a Java
object or a Java array of objects:

struct(object);

The following example converts a java.awt.Polygon object into a MATLAB
struct. You can access the fields of the object directly using MATLAB struct
operations. The last line indexes into the array, pstruct.xpoints, to deposit
a new value into the third array element.

polygon = java.awt.Polygon([14 42 98 124], [55 12 -2 62], 4);
pstruct = struct(polygon)

pstruct =
npoints: 4
xpoints: [4x1 int32]
ypoints: [4x1 int32]

pstruct.xpoints

ans =
14
42
98

124

pstruct.xpoints(3) = 101;

Converting to a MATLAB Cell Array
Use the cell function to convert a Java array or Java object into a MATLAB
cell array. Elements of the resulting cell array are of the MATLAB type (if
any) closest to the Java array elements or Java object.

7-63

7 Using Java® Libraries from MATLAB®

The syntax for the cell command is as follows, where object is a Java object
or a Java array of objects.

cell(object);

The following example uses the cell command to create a MATLAB cell array
in which each cell holds an array of a different type.

import java.lang.* java.awt.*;

% Create a Java array of double

dblArray = javaArray('java.lang.Double', 1, 10);

for m = 1:10

dblArray(1, m) = Double(m * 7);

end

% Create a Java array of points

ptArray = javaArray('java.awt.Point', 3);

ptArray(1) = Point(7.1, 22);

ptArray(2) = Point(5.2, 35);

ptArray(3) = Point(3.1, 49);

% Create a Java array of strings

strArray = javaArray('java.lang.String', 2, 2);

strArray(1,1) = String('one'); strArray(1,2) = String('two');

strArray(2,1) = String('three'); strArray(2,2) = String('four');

% Convert each to cell arrays

cellArray = {cell(dblArray), cell(ptArray), cell(strArray)}

cellArray =

{1x10 cell} {3x1 cell} {2x2 cell}

cellArray{1,1} % Array of type double

ans =

[7] [14] [21] [28] [35] [42] [49] [56] [63] [70]

cellArray{1,2} % Array of type Java.awt.Point

ans =

[1x1 java.awt.Point]

7-64

Handling Data Returned from Java® Methods

[1x1 java.awt.Point]

[1x1 java.awt.Point]

cellArray{1,3} % Array of type char array

ans =

'one' 'two'

'three' 'four'

7-65

7 Using Java® Libraries from MATLAB®

Read URL

In this section...

“Overview” on page 7-66

“Description of URLdemo” on page 7-66

“Running the Example” on page 7-67

Overview
This program, URLdemo, opens a connection to a Web site specified by a URL
(Uniform Resource Locator) for the purpose of reading text from a file at
that site.

URLdemo constructs an object of the Java API class, java.net.URL, which
enables convenient handling of URLs. Then, it calls a method on the URL
object, to open a connection.

To read and display the lines of text at the site, URLdemo uses classes from
the Java I/O package java.io. It creates an InputStreamReader object,
and then uses that object to construct a BufferedReader object. Finally, it
calls a method on the BufferedReader object to read the specified number
of lines from the site.

Description of URLdemo
The major tasks performed by URLdemo are:

1 Construct a URL object.

The example first calls a constructor on java.net.URL and assigns the
resulting object to variable url. The URL constructor takes a single
argument, the name of the URL to be accessed, as a string. The constructor
checks whether the input URL has a valid form.

url = java.net.URL(...
'http://www.mathworks.com')

2 Open a connection to the URL.

7-66

Read URL

The second statement of the example calls the method, openStream, on
the URL object url, to establish a connection with the Web site named by
the object. The method returns an InputStream object to variable, is, for
reading bytes from the site.

is = openStream(url);

3 Set up a buffered stream reader.

The next two lines create a buffered stream reader for characters. The
java.io.InputStreamReader constructor is called with the input stream
is, to return to variable isr an object that can read characters. Then,
the java.io.BufferedReader constructor is called with isr, to return
a BufferedReader object to variable br. A buffered reader provides for
efficient reading of characters, arrays, and lines.

isr = java.io.InputStreamReader(is);
br = java.io.BufferedReader(isr);

4 Read and display lines of text.

The following statements read the lines of HTML text from the site,
looking for text beginning with a paragraph tag, <p>. Within the MATLAB
while loop, the BufferedReader method readLine reads each line of text
(terminated by a return and/or line feed character) from the site.

p1 = java.lang.String('<p>');
p2 = java.lang.String('</p>');
s = readLine(br);
while ~(s.startsWith(p1))

s = readLine(br);
end

5 Display the text.

disp(s.substring(p1.length,s.length-p2.length))

Running the Example
When you run this example, you see output similar to the following.

7-67

7 Using Java® Libraries from MATLAB®

Explore products for MATLAB, the language of technical computing, and Simul

7-68

Find Internet Protocol Address

Find Internet Protocol Address

In this section...

“Overview” on page 7-69

“Description of resolveip” on page 7-69

“Running the Example” on page 7-70

Overview
The resolveip function returns either the name or address of an IP (internet
protocol) host. If you pass resolveip a host name, it returns the IP address.
If you pass resolveip an IP address, it returns the host name. The function
uses the Java API class java.net.InetAddress, which enables you to find
an IP address for a host name, or the host name for a given IP address,
without making DNS calls.

resolveip calls a static method on the InetAddress class to obtain an
InetAddress object. Then, it calls accessor methods on the InetAddress
object to get the host name and IP address for the input argument. It displays
either the host name or the IP address, depending on the program input
argument.

Description of resolveip
The major tasks performed by resolveip are:

1 Create an InetAddress object.

Instead of constructors, the java.net.InetAddress class has static
methods that return an instance of the class. The try statement calls one
of those methods, getByName, passing the input argument that the user
has passed to resolveip. The input argument can be either a host name
or an IP address. If getByName fails, the catch statement displays an
error message.

function resolveip(input)
try
address = java.net.InetAddress.getByName(input);

7-69

7 Using Java® Libraries from MATLAB®

catch
error(sprintf('Unknown host %s.', input));

end

2 Retrieve the host name and IP address.

The example uses calls to the getHostName and getHostAddress accessor
functions on the java.net.InetAddress object, to obtain the host name
and IP address, respectively. These two functions return objects of class
java.lang.String; use the char function to convert them to character
arrays.

hostname = char(address.getHostName);
ipaddress = char(address.getHostAddress);

3 Display the host name or IP address.

The example uses the MATLAB strcmp function to compare the input
argument to the resolved IP address. If it matches, MATLAB displays the
host name for the Internet address. If the input does not match, MATLAB
displays the IP address.

if strcmp(input,ipaddress)
disp(sprintf('Host name of %s is %s', input, hostname));

else
disp(sprintf('IP address of %s is %s', input, ipaddress));

end;

Running the Example
Here is an example of calling the resolveip function with a host name.

resolveip ('www.mathworks.com')
IP address of www.mathworks.com is 144.212.100.10

Here is a call to the function with an IP address.

resolveip ('144.212.100.10')
Host name of 144.212.100.10 is www.mathworks.com

7-70

Create and Use Phone Book

Create and Use Phone Book

In this section...

“Overview” on page 7-71

“Description of Function phonebook” on page 7-72

“Description of Function pb_lookup” on page 7-76

“Description of Function pb_add” on page 7-77

“Description of Function pb_remove” on page 7-78

“Description of Function pb_change” on page 7-79

“Description of Function pb_listall” on page 7-80

“Description of Function pb_display” on page 7-81

“Description of Function pb_keyfilter” on page 7-81

“Running the phonebook Program” on page 7-82

Overview
The example’s main function, phonebook, can be called either with no
arguments, or with one argument, which is the key of an entry that exists
in the phone book. The function first determines the folder to use for the
phone book file.

If no phone book file exists, it creates one by constructing a
java.io.FileOutputStream object, and then closing the output stream.
Next, it creates a data dictionary by constructing an object of the Java API
class, java.util.Properties, which is a subclass of java.util.Hashtable
for storing key/value pairs in a hash table. For the phonebook program, the
key is a name, and the value is one or more telephone numbers.

The phonebook function creates and opens an input stream for reading by
constructing a java.io.FileInputStream object. It calls load on that object
to load the hash table contents, if it exists. If the user passed the key to an
entry to look up, it looks up the entry by calling pb_lookup, which finds and
displays it. Then, the phonebook function returns.

7-71

7 Using Java® Libraries from MATLAB®

If phonebook was called without the name argument, it then displays a
textual menu of the available phone book actions:

• Look up an entry

• Add an entry

• Remove an entry

• Change the phone number(s) in an entry

• List all entries

The menu also has a selection to exit the program. The function uses
MATLAB functions to display the menu and to input the user selection.

The phonebook function iterates accepting user selections and performing the
requested phone book action until the user selects the menu entry to exit. The
phonebook function then opens an output stream for the file by constructing a
java.io.FileOutputStream object. It calls save on the object to write the
current data dictionary to the phone book file. It finally closes the output
stream and returns.

Description of Function phonebook
The major tasks performed by phonebook are:

1 Determine the data folder and full filename.

The first statement assigns the phone book filename, ’myphonebook’, to
the variable pbname. If the phonebook program is running on a Windows
system, it calls the java.lang.System static method getProperty to find
the location of the data dictionary. This is set to the user’s current working
folder. Otherwise, it uses MATLAB function getenv to determine the
location, using the system variable HOME, which you can define beforehand
to anything you like. It then assigns to pbname the full path name,
consisting of the data folder and filename ’myphonebook’.

function phonebook(varargin)
pbname = 'myphonebook'; % name of data dictionary
if ispc

datadir = char(java.lang.System.getProperty('user.dir'));

7-72

Create and Use Phone Book

else
datadir = getenv('HOME');

end;
pbname = fullfile(datadir, pbname);

2 If needed, create a file output stream.

If the phonebook file does not already exist, phonebook asks the user
whether to create a new one. If the user answers y, phonebook creates
a new phone book by constructing a FileOutputStream object. In the
try clause of a try/catch block, the argument pbname passed to the
FileOutputStream constructor is the full name of the file that the
constructor creates and opens. The next statement closes the file by
calling close on the FileOutputStream object FOS. If the output stream
constructor fails, the catch statement prints a message and terminates
the program.

if ~exist(pbname)
disp(sprintf('Data file %s does not exist.', pbname));
r = input('Create a new phone book (y/n)?','s');
if r == 'y',

try
FOS = java.io.FileOutputStream(pbname);
FOS.close

catch
error(sprintf('Failed to create %s', pbname));

end;
else

return;
end;

end;

3 Create a hash table.

The example constructs a java.util.Properties object to serve as the
hash table for the data dictionary.

pb_htable = java.util.Properties;

4 Create a file input stream.

7-73

7 Using Java® Libraries from MATLAB®

In a try block, the example invokes a FileInputStream constructor with
the name of the phone book file, assigning the object to FIS. If the call
fails, the catch statement displays an error message and terminates the
program.

try
FIS = java.io.FileInputStream(pbname);

catch
error(sprintf('Failed to open %s for reading.', pbname));
end;

5 Load the phone book keys and close the file input stream.

The example calls load on the FileInputStream object FIS, to load the
phone book keys and their values (if any) into the hash table. It then closes
the file input stream.

pb_htable.load(FIS);
FIS.close;

6 Display the Action menu and get the user’s selection.

Within a while loop, several disp statements display a menu of actions
that the user can perform on the phone book. Then, an input statement
requests the user’s typed selection.

while 1

disp ' '

disp ' Phonebook Menu:'

disp ' '

disp ' 1. Look up a phone number'

disp ' 2. Add an entry to the phone book'

disp ' 3. Remove an entry from the phone book'

disp ' 4. Change the contents of an entry in the phone book'

disp ' 5. Display entire contents of the phone book'

disp ' 6. Exit this program'

disp ' '

s = input('Please type the number for a menu selection: ','s');

7 Invoke the function to perform a phone book action

7-74

Create and Use Phone Book

Still within the while loop, a switch statement provides a case to handle
each user selection s. Each of the first five cases invokes the function to
perform a phone book action.

Case 1 prompts for a name that is a key to an entry. It calls isempty to
determine whether the user has entered a name. If a name has not been
entered, it calls disp to display an error message. If a name has been input,
it passes it to pb_lookup. The pb_lookup routine looks up the entry and, if
it finds it, displays the entry contents.

case '1',
name = input('Enter name to look up: ','s');
if isempty(name)

disp 'No name entered'
else

pb_lookup(pb_htable, name);
end;

Case 2 calls pb_add, which prompts the user for a new entry and then
adds it to the phone book.

case '2',
pb_add(pb_htable);

Case 3 uses input to prompt for the name of an entry to remove. If a name
has not been entered, it calls disp to display an error message. If a name
has been entered, it passes it to pb_remove.

case '3',
name=input('Enter name of entry to remove: ', 's');
if isempty(name)

disp 'No name entered'
else

pb_remove(pb_htable, name);
end;

Case 4 uses input to prompt for the name of an entry to change. If a name
has not been entered, it calls disp to display an error message. If a name
has been entered, it passes it to pb_change.

case '4',
name=input('Enter name of entry to change: ', 's');

7-75

7 Using Java® Libraries from MATLAB®

if isempty(name)
disp 'No name entered'

else
pb_change(pb_htable, name);

end;

Case 5 calls pb_listall to display all entries.

case '5',
pb_listall(pb_htable);

8 Exit by creating an output stream and saving the phone book.

If the user has selected case 6 to exit the program, a try statement calls
the constructor for a FileOuputStream object, passing it the name of the
phone book. If the constructor fails, the catch statement displays an error
message.

If the object is created, the next statement saves the phone book data
by calling save on the Properties object pb_htable, passing the
FileOutputStream object FOS and a descriptive header string. It then calls
close on the FileOutputStream object, and returns.

case '6',
try

FOS = java.io.FileOutputStream(pbname);
catch

error(sprintf('Failed to open %s for writing.',pbname));
end;
pb_htable.save(FOS,'Data file for phonebook program');
FOS.close;
return;

otherwise
disp 'That selection is not on the menu.'

end;

Description of Function pb_lookup
Arguments passed to pb_lookup are the Properties object pb_htable and
the name key for the requested entry. The pb_lookup function first calls get
on pb_htable with the name key, on which support function pb_keyfilter

7-76

Create and Use Phone Book

is called to change spaces to underscores. The get method returns the entry
(or null, if the entry is not found) to variable entry. Note that get takes an
argument of type java.lang.Object and also returns an argument of that
type. In this invocation, the key passed to get and the entry returned from it
are actually character arrays.

pb_lookup then calls isempty to determine whether entry is null. If it is, it
uses disp to display a message stating that the name was not found. If entry
is not null, it calls pb_display to display the entry.

function pb_lookup(pb_htable,name)
entry = pb_htable.get(pb_keyfilter(name));
if isempty(entry),

disp(sprintf('The name %s is not in the phone book',name));
else

pb_display(entry);
end

Description of Function pb_add

1 Input the entry to add.

The pb_add function takes one argument, the Properties object
pb_htable. pb_add uses disp to prompt for an entry. Using the up arrow
(^) character as a line delimiter, input inputs a name to the variable
entry. Then, within a while loop, it uses input to get another line of the
entry into variable line. If the line is empty, indicating that the user has
finished the entry, the code breaks out of the while loop. If the line is not
empty, the else statement appends line to entry and then appends the line
delimiter. At the end, the strcmp checks the possibility that no input was
entered and, if that is the case, returns.

function pb_add(pb_htable)
disp 'Type the name for the new entry, followed by Enter.'
disp 'Then, type the phone number(s), one per line.'
disp 'To complete the entry, type an extra Enter.'
name = input(':: ','s');
entry=[name '^'];
while 1

line = input(':: ','s');

7-77

7 Using Java® Libraries from MATLAB®

if isempty(line)
break;

else
entry=[entry line '^'];

end;
end;

if strcmp(entry, '^')
disp 'No name entered'
return;

end;

2 Add the entry to the phone book.

After the input has completed, pb_add calls put on pb_htable with the hash
key name (on which pb_keyfilter is called to change spaces to underscores)
and entry. It then displays a message that the entry has been added.

pb_htable.put(pb_keyfilter(name),entry);
disp ' '
disp(sprintf('%s has been added to the phone book.', name));

Description of Function pb_remove

1 Look for the key in the phone book.

Arguments passed to pb_remove are the Properties object pb_htable
and the name key for the entry to remove. The pb_remove function calls
containsKey on pb_htable with the name key, on which support function
pb_keyfilter is called to change spaces to underscores. If name is not in
the phone book, disp displays a message and the function returns.

function pb_remove(pb_htable,name)
if ~pb_htable.containsKey(pb_keyfilter(name))

disp(sprintf('The name %s is not in the phone book',name))
return

end;

2 Ask for confirmation and if given, remove the key.

7-78

Create and Use Phone Book

If the key is in the hash table, pb_remove asks for user confirmation. If
the user confirms the removal by entering y, pb_remove calls remove on
pb_htable with the (filtered) name key, and displays a message that the
entry has been removed. If the user enters n, the removal is not performed
and disp displays a message that the removal has not been performed.

r = input(sprintf('Remove entry %s (y/n)? ',name), 's');

if r == 'y'

pb_htable.remove(pb_keyfilter(name));

disp(sprintf('%s has been removed from the phone book',name))

else

disp(sprintf('%s has not been removed',name))

end;

Description of Function pb_change

1 Find the entry to change, and confirm.

Arguments passed to pb_change are the Properties object pb_htable
and the name key for the requested entry. The pb_change function calls
get on pb_htable with the name key, on which pb_keyfilter is called to
change spaces to underscores. The get method returns the entry (or null,
if the entry is not found) to variable entry. pb_change calls isempty to
determine whether the entry is empty. If the entry is empty, pb_change
displays a message that the name is added to the phone book, and allows
the user to enter the phone number(s) for the entry.

If the entry is found, in the else clause, pb_change calls pb_display
to display the entry. It then uses input to ask the user to confirm the
replacement. If the user enters anything other than y, the function returns.

function pb_change(pb_htable,name)
entry = pb_htable.get(pb_keyfilter(name));
if isempty(entry)

disp(sprintf('The name %s is not in the phone book', name));
return;

else
pb_display(entry);
r = input('Replace phone numbers in this entry (y/n)? ','s');
if r ~= 'y'

return;

7-79

7 Using Java® Libraries from MATLAB®

end;
end;

2 Input new phone number(s) and change the phone book entry.

pb_change uses disp to display a prompt for new phone number(s). Then,
pb_change inputs data into variable entry, with the same statements
described in “Description of Function pb_lookup” on page 7-76.

Then, to replace the existing entry with the new one, pb_change calls put
on pb_htable with the (filtered) key name and the new entry. It then
displays a message that the entry has been changed.

disp 'Type in the new phone number(s), one per line.'
disp 'To complete the entry, type an extra Enter.'
disp(sprintf(':: %s', name));
entry=[name '^'];
while 1

line = input(':: ','s');
if isempty(line)

break;
else

entry=[entry line '^'];
end;

end;
pb_htable.put(pb_keyfilter(name),entry);
disp ' '
disp(sprintf('The entry for %s has been changed', name));

Description of Function pb_listall
The pb_listall function takes one argument, the Properties object
pb_htable. The function calls propertyNames on the pb_htable object
to return to enum a java.util.Enumeration object, which supports
convenient enumeration of all the keys. In a while loop, pb_listall
calls hasMoreElements on enum, and if it returns true, pb_listall calls
nextElement on enum to return the next key. It then calls pb_display to
display the key and entry, which it retrieves by calling get on pb_htable
with the key.

7-80

Create and Use Phone Book

function pb_listall(pb_htable)
enum = pb_htable.propertyNames;
while enum.hasMoreElements

key = enum.nextElement;
pb_display(pb_htable.get(key));

end;

Description of Function pb_display
The pb_display function takes an argument entry, which is a phone book
entry. After displaying a horizontal line, pb_display calls MATLAB function
strtok to extract the first line of the entry, up to the line delimiter (^), into t
and the remainder into r. Then, within a while loop that terminates when
t is empty, it displays the current line in t. Then it calls strtok to extract
the next line from r, into t. When all lines have been displayed, pb_display
indicates the end of the entry by displaying another horizontal line.

function pb_display(entry)
disp ' '
disp '-------------------------'
[t,r] = strtok(entry,'^');
while ~isempty(t)

disp(sprintf(' %s',t));
[t,r] = strtok(r,'^');

end;
disp '-------------------------'

Description of Function pb_keyfilter
The pb_keyfilter function takes an argument key, which is a name used
as a key in the hash table, and either filters it for storage or unfilters it for
display. The filter, which replaces each space in the key with an underscore
(_), makes the key usable with the methods of java.util.Properties.

function out = pb_keyfilter(key)
if ~isempty(strfind(key,' '))

out = strrep(key,' ','_');
else

out = strrep(key,'_',' ');
end;

7-81

7 Using Java® Libraries from MATLAB®

Running the phonebook Program
In this sample run, a user invokes phonebook with no arguments. The user
selects menu action 5, which displays the two entries currently in the phone
book (all entries are fictitious). Then, the user selects 2, to add an entry. After
adding the entry, the user again selects 5, which displays the new entry along
with the other two entries.

Phonebook Menu:

1. Look up a phone number
2. Add an entry to the phone book
3. Remove an entry from the phone book
4. Change the contents of an entry in the phone book
5. Display entire contents of the phone book
6. Exit this program

Please type the number for a menu selection: 5

Sylvia Woodland
(508) 111-3456

Russell Reddy
(617) 999-8765

Phonebook Menu:

1. Look up a phone number
2. Add an entry to the phone book
3. Remove an entry from the phone book
4. Change the contents of an entry in the phone book
5. Display entire contents of the phone book
6. Exit this program

Please type the number for a menu selection: 2

Type the name for the new entry, followed by Enter.

7-82

Create and Use Phone Book

Then, type the phone number(s), one per line.
To complete the entry, type an extra Enter.
:: BriteLites Books
:: (781) 777-6868
::

BriteLites Books has been added to the phone book.

Phonebook Menu:

1. Look up a phone number
2. Add an entry to the phone book
3. Remove an entry from the phone book
4. Change the contents of an entry in the phone book
5. Display entire contents of the phone book
6. Exit this program

Please type the number for a menu selection: 5

BriteLites Books
(781) 777-6868

Sylvia Woodland
(508) 111-3456

Russell Reddy
(617) 999-8765

7-83

7 Using Java® Libraries from MATLAB®

7-84

8

Using .NET Libraries from
MATLAB

• “Overview Using .NET from MATLAB” on page 8-3

• “Getting Started with .NET” on page 8-8

• “Using a .NET Object” on page 8-14

• “Using .NET Properties” on page 8-17

• “Using .NET Methods in MATLAB” on page 8-19

• “Working with .NET Events in MATLAB” on page 8-25

• “Using Arrays with .NET Applications” on page 8-27

• “Pass Jagged Arrays” on page 8-31

• “.NET Delegates in MATLAB” on page 8-35

• “.NET Enumerations in MATLAB” on page 8-46

• “.NET Generic Classes in MATLAB” on page 8-61

• “Troubleshooting Security Policy Settings From Network Drives” on page
8-72

• “Access a Simple .NET Class” on page 8-73

• “Load a Global .NET Assembly” on page 8-79

• “Pass Numeric Arguments” on page 8-80

• “Pass System.String Arguments” on page 8-81

• “Pass System.Enum Arguments” on page 8-83

• “Pass System.Nullable Arguments” on page 8-86

8 Using .NET Libraries from MATLAB®

• “Set Static .NET Properties” on page 8-91

• “Use .NET Properties That Take Arguments” on page 8-93

• “MATLAB Does Not Display Protected Properties” on page 8-94

• “Examples Using .NET Methods” on page 8-95

• “Call .NET Methods with Optional Arguments” on page 8-100

• “Pass Cell Arrays of .NET Data” on page 8-104

• “An Assembly is a Library of .NET Classes” on page 8-107

• “Convert Nested System.Object Arrays” on page 8-108

• “Passing Data to .NET Objects” on page 8-109

• “Handling Data Returned from .NET Objects” on page 8-117

• “Work with Microsoft® Excel® Spreadsheets Using .NET” on page 8-123

• “Work with Microsoft Word Documents Using .NET” on page 8-125

8-2

Overview Using .NET from MATLAB®

Overview Using .NET from MATLAB

In this section...

“What Is the Microsoft .NET Framework?” on page 8-3

“Benefits of the MATLAB .NET Interface” on page 8-3

“Why Use the MATLAB .NET Interface?” on page 8-3

“Limitations to .NET Support” on page 8-4

“What’s the Difference Between the MATLAB .NET Interface and
MATLAB® Builder™ NE?” on page 8-5

“System Requirements” on page 8-6

“Using a .NET assembly in MATLAB” on page 8-6

“To Learn More About the .NET Framework” on page 8-6

What Is the Microsoft .NET Framework?
The Microsoft .NET Framework is an integral Windows component that
provides a large body of precoded solutions to common program requirements,
and manages the execution of programs written specifically for the
Framework.

MATLAB supports the .NET Framework on the Windows platform only.

Benefits of the MATLAB .NET Interface
The MATLAB .NET interface enables you to:

• Create instances of .NET classes.

• Interact with .NET applications via their class members.

Why Use the MATLAB .NET Interface?
Use the MATLAB .NET interface to take advantage of the capabilities of the
Microsoft .NET Framework. For example:

• You have a professionally developed .NET assembly and want to use it to
do certain operations, such as access hardware.

8-3

8 Using .NET Libraries from MATLAB®

• You want to leverage the capabilities of programming in .NET (for example,
you have existing C# programs).

• You want to access existing Microsoft-supplied classes for .NET.

The speech synthesizer class, available in .NET Framework Version 3.0 and
above, is an example of a ready-to-use feature. Create the following Speak
function in MATLAB:

function Speak(text)
NET.addAssembly('System.Speech');
speak = System.Speech.Synthesis.SpeechSynthesizer;
speak.Volume = 100;
Speak(speak,text);
end

For an example rendering text to speech, type:

Speak('You can use .NET Libraries in MATLAB');

Limitations to .NET Support
MATLAB supports the .NET features C# supports, except for the limits noted
in the following table.

Features Not Supported in MATLAB

Cannot use ClassName.propertyname syntax to set static properties. Use
NET.setStaticProperty instead.

Unloading an assembly

Passing a structure array, sparse array, or complex number to a .NET
property or method

Subclassing .NET classes from MATLAB

Accessing nonpublic class members

Displaying generic methods using methods or methodsview functions.
For a workaround, see “Display .NET Generic Methods Using Reflection”
on page 8-68.

8-4

Overview Using .NET from MATLAB®

Features Not Supported in MATLAB

Creating an instance of a nested class. For a workaround, see “Working
With Nested Classes” on page 8-12.

Saving (serializing) .NET objects into a MAT-file

Creating .NET arrays with a specific lower bound

Concatenating multiple .NET objects into an array

Implementing interface methods

Hosting .NET controls in figure windows

Casting operations

Calling constructors with ref or out type arguments

Using System.Console.WriteLine to write text to the command window

Pointer type arguments, function pointers, Dllimport keyword

.NET remoting

Using the MATLAB : (colon) operator in a foreach iteration

Adding event listeners to .NET events defined in static classes

Handling .NET events with signatures that do not conform to the standard
signature

Creating empty .NET objects

Creating .NET objects that do not belong to a namespace

What’s the Difference Between the MATLAB .NET
Interface and MATLAB Builder NE?
The MATLAB .NET interface is for MATLAB users who want to use .NET
assemblies in MATLAB.

MATLAB Builder™ NE packages MATLAB functions so that .NET
programmers can access them. It brings MATLAB into .NET applications.
For more information about this product, see the product link at
http://www.mathworks.com/help/.

8-5

http://www.mathworks.com/help/

8 Using .NET Libraries from MATLAB®

System Requirements
The MATLAB interface to .NET is available on the Windows platform only.

You must have the Microsoft .NET Framework installed on your system.

The MATLAB interface requires the .NET Framework Version 4.0 and above.
The interface continues to support assemblies built on Framework 2.0 and
above. To determine if your system has the supported framework, use the
NET.IsNETSupported function.

To use a .NET application, refer to your vendor’s product documentation
for information about how to install the program and for details about its
functionality.

MATLAB Configuration File
MATLAB provides a configuration file, MATLAB.exe.config, in your
matlabroot/bin/arch folder. With this file, MATLAB loads the latest
core assemblies available on your system. You can modify and use
the configuration file at your own risk. For additional information
on elements that can be used in the configuration file, please visit
the Configuration File Schema for the .NET Framework Web page at
http://msdn.microsoft.com/en-us/library/1fk1t1t0.aspx.

Using a .NET assembly in MATLAB
For an example of using .NET in MATLAB, see:

• “Getting Started with .NET” on page 8-8

For detailed information, see:

• “Loading .NET Assemblies into MATLAB” on page 8-11

• “Using a .NET Object” on page 8-14

To Learn More About the .NET Framework
For a complete description of the .NET Framework, you need to consult
outside resources.

8-6

http://msdn.microsoft.com/en-us/library/1fk1t1t0.aspx

Overview Using .NET from MATLAB®

One source of information is the Microsoft Developer
Network. Search the .NET Framework Development Center at
http://msdn.microsoft.com/en-us/netframework/aa496123 for the term
“.NET Framework Class Library”. The .NET Framework Class Library is
a programming reference manual. Many examples in this documentation
refer to classes in this library. There are different versions of the .NET
Framework documentation, so be sure to refer to the version that is on your
system. See “System Requirements” on page 8-6 for information about
version support in MATLAB.

8-7

http://msdn.microsoft.com/en-us/netframework/aa496123

8 Using .NET Libraries from MATLAB®

Getting Started with .NET

In this section...

“What is an Assembly?” on page 8-8

“.NET Terminology” on page 8-9

“Simplifying .NET Class Names” on page 8-10

“Loading .NET Assemblies into MATLAB” on page 8-11

“Handling Exceptions” on page 8-12

“Working With Nested Classes” on page 8-12

What is an Assembly?
Assemblies are the building blocks of .NET Framework applications; they
form the fundamental unit of deployment, version control, reuse, activation
scoping, and security permissions. An assembly is a collection of types and
resources built to work together and form a logical unit of functionality.

To work with a .NET application, you need to make its assemblies visible to
MATLAB. How you do this depends on how the assembly is deployed, either
privately or globally.

• A global assembly is shared among applications and installed in a common
directory, called the Global Assembly Cache (GAC).

• A private assembly is used by a single application.

To load a global assembly into MATLAB, use the short name of the assembly,
which is the file name without the extension. To load a private assembly, you
need the full path (folder and file name with extension) of the assembly. This
information is in the your product’s vendor documentation for the assembly.
Refer to the vendor documentation for everything you need to know to use
your product.

8-8

Getting Started with .NET

The following assemblies from the .NET Framework class library are
available at startup. MATLAB dynamically loads them the first time you type
“NET.” or “System.”.

• mscorlib.dll

• system.dll

To use any other .NET assembly, load the assembly using the
NET.addAssembly command. After loading the assembly, you can work with
the classes defined by the assembly.

For an example showing you how to find the information you need to work
with assemblies, see:

• “Access a Simple .NET Class” on page 8-73

For detailed information, see:

• “Loading .NET Assemblies into MATLAB” on page 8-11

• “Using a .NET Object” on page 8-14

.NET Terminology
A namespace is a way to group identifiers. A namespace can contain other
namespaces. In MATLAB, a namespace is a package. In MATLAB, a .NET
type is a class.

The syntax namespace.ClassName is known as a fully qualified name.

.NET Framework System Namespace
System is the root namespace for fundamental types in the .NET Framework.
This namespace also contains classes (for example, System.String
and System.Array) and second-level namespaces (for example,
System.Collections.Generic). The mscorlib and system assemblies, which
MATLAB loads at startup, contain many, but not all System namespaces. For
example, to use classes in the System.Xml namespace, load the system.xml
assembly using the NET.addAssembly command. Refer to the Microsoft
.NET Framework Class Library Reference to learn what assembly to use for
a specific namespace.

8-9

8 Using .NET Libraries from MATLAB®

Reference Type Versus Value Type
Objects created from .NET classes (for example, the
System.Reflection.Assembly class) appear in MATLAB as reference types,
or handle objects. Objects created from .NET structures (for example, the
System.DateTime structure) appear as value types. You use the same
MATLAB syntax to create and access members of classes and structures.

However, handle objects are different from value objects. When you copy a
handle object, only the handle is copied and both the old and new handles
refer to the same data. When you copy a value object, the object’s data is also
copied and the new object is independent of changes to the original object. For
more information about these differences, see “Copying Objects”.

Do not confuse an object created from a .NET structure with a MATLAB
structure array (see “Structures”). You cannot pass a structure array to
a .NET method.

Simplifying .NET Class Names
In a MATLAB command, you can refer to any class by its fully qualified
name, which includes its package name. A fully qualified name might be
long, making commands and functions, such as constructors, cumbersome to
edit and to read. You can refer to classes by the class name alone (without a
package name) if you first import the fully qualified name into MATLAB. The
import function adds all classes that you import to a list called the import
list. You can see what classes are on that list by typing import, without any
arguments.

For example, to eliminate the need to type System. before every command in
the “Access a Simple .NET Class” on page 8-73 example, type:

import System.*
import System.DateTime.*

To create the object, type:

dateObj = DateTime.Today;

To use a static method, type:

DaysInMonth(dateObj.Year, dateObj.Month)

8-10

Getting Started with .NET

Using import in MATLAB Functions
If you use the import command in a MATLAB function, you must add the
corresponding .NET assembly before calling the function. For example, the
following function getPrinterInfo calls methods in the System.Drawing
namespace.

function ptr = getPrinterInfo
import System.Drawing.Printing.*;
ptr = PrinterSettings;
end

To call the function, type:

NET.addAssembly('System.Drawing');
printer = getPrinterInfo;

You cannot add the command NET.addAssembly('System.Drawing') to
the getPrinterInfo function. MATLAB processes the getPrinterInfo.m
code before executing the NET.addAssembly command. In that case,
PrinterSettings is not fully-qualified and MATLAB does not recognize the
name.

Likewise, the scope of the import command is limited to the getPrinterInfo
function. At the command line, type:

ptr = PrinterSettings;

Undefined function or variable 'PrinterSettings'.

Loading .NET Assemblies into MATLAB
If MATLAB does not automatically load your assembly, use the
NET.addAssembly function. The syntax is:

asmInfo = NET.addAssembly('assemblyName');

You need to know if the assembly is global or private, as explained in “What is
an Assembly?” on page 8-8 Your vendor documentation has this information.

8-11

8 Using .NET Libraries from MATLAB®

You cannot unload an assembly from MATLAB.

Handling Exceptions
MATLAB catches exceptions thrown by .NET and converts them into a
NET.NetException object, which is derived from the MException class. The
default display of NetException contains the Message, Source and HelpLink
fields of the System.Exception class that caused the exception. For example:

try
NET.addAssembly('C:\Work\invalidfile.dll')

catch e
e.message
if(isa(e,'NET.NetException'))

e.ExceptionObject
end

end

Working With Nested Classes
In MATLAB, you cannot directly instantiate a nested class but here is how to
do it through reflection. The following C# code defines InnerClass nested in
OuterClass:

namespace MyClassLibrary
{

public class OuterClass
{

public class InnerClass
{

public String strmethod(String x)
{

return "from InnerClass " + x;
}

}
}

}

If the MyClassLibrary assembly is in your c:\work folder, load the file:

a = NET.addAssembly('C:\Work\MyClassLibrary.dll');

8-12

Getting Started with .NET

a.Classes

ans =
'MyClassLibrary.OuterClass'
'MyClassLibrary.OuterClass+InnerClass'

To call strmethod, type:

t = a.AssemblyHandle.GetType('MyClassLibrary.OuterClass+InnerClass');
obj = System.Activator.CreateInstance(t);
strmethod(obj,'hello')

ans =
from InnerClass hello

8-13

8 Using .NET Libraries from MATLAB®

Using a .NET Object

In this section...

“Creating a .NET Object” on page 8-14

“Building a .NET Application for MATLAB Examples” on page 8-14

“What Classes Are in a .NET Assembly?” on page 8-15

“Using the delete Function on a .NET Object” on page 8-15

Creating a .NET Object
You often need to create objects when working with .NET classes. An object
is an instance of a particular class. Methods are functions that operate
exclusively on objects of a class. Data types package together objects and
methods so that the methods operate on objects of their own type. For more
information about objects, see “MATLAB Objects”.

You construct .NET objects in the MATLAB workspace by calling the class
constructor, which has the same name as the class. The syntax to create
a .NET object classObj is:

classObj = namespace.ClassName(varargin)

where varargin is the list of constructor arguments to create an instance of
the class specified by ClassName in the given namespace. For an example, see
“Create .NET Object From Constructor” on page 8-74.

Building a .NET Application for MATLAB Examples
You can use C# code examples in MATLAB, such as the NetDocCell assembly
provided in “Converting .NET Arrays to Cell Arrays” on page 8-28. Build an
application using a C# development tool, like Microsoft Visual Studio and then
load it into MATLAB using the NET.addAssembly function. The following
are basic steps to do this; consult your development tool documentation for
specific instructions.

1 From your development tool, open a new project and create a C# class
library.

8-14

Using a .NET Object

2 Copy the classes and other constructs from the C# files into your project.

3 Build the project as a DLL.

4 The name of this assembly is the namespace. Note the full path to the
DLL file. Since it is a private assembly, you must use the full path to load
it in MATLAB.

5 After you load the assembly, if you modify and rebuild it, you must restart
MATLAB to access the new assembly. You cannot unload an assembly
in MATLAB.

What Classes Are in a .NET Assembly?
The product documentation for your assembly contains information about its
classes. However, you can use the NET.addAssembly command to read basic
information about an assembly. For example, to view the class names for the
private assembly netdoc.NetSample, type:

dllPath = fullfile('c:','work','NetSample.dll');
sampleInfo = NET.addAssembly(dllPath);
sampleInfo.Classes

ans =
'netdoc.SampleMethodSignature'
'netdoc.SampleMethods'

If your assembly has hundreds of entries, you can consult the product
documentation, or open a window to an online document, such as the
System namespace reference page on the Microsoft Developer Network. For
information about using this documentation, see “To Learn More About the
.NET Framework” on page 8-6. For example, to find the number of classes
nclasses in mscorlib, type:

asm = NET.addAssembly('mscorlib');
[nclasses,x] = size(asm.Classes);

Using the delete Function on a .NET Object
Objects created from .NET classes appear in MATLAB as reference types, or
handle objects. Calling the delete function on a .NET handle releases all

8-15

8 Using .NET Libraries from MATLAB®

references to that .NET object from MATLAB, but does not invoke any .NET
finalizers. The .NET Framework manages garbage collection.

For more information about managing handle objects, see “Destroying
Objects”.

8-16

Using .NET Properties

Using .NET Properties

In this section...

“How MATLAB Represents .NET Properties” on page 8-17

“How MATLAB Maps C# Property and Field Access Modifiers” on page 8-18

How MATLAB Represents .NET Properties
To view property names, use the properties function.

To get and set the value of a class property, use the MATLAB dot notation:

x = ClassName.PropertyName;
ClassName.PropertyName = y;

The following example gets the value of a property (the current day of the
month):

obj = System.DateTime.Now;
d = obj.Day;

The following example sets the value of a property (the Volume for a
SpeechSynthesizer object):

NET.addAssembly('System.Speech');
obj = System.Speech.Synthesis.SpeechSynthesizer;
obj.Volume = 50;
Speak(obj,'You can use .NET Libraries in MATLAB');

To set a static property, you must call the NET.setStaticProperty function .
For an example, see “Set Static .NET Properties” on page 8-91.

MATLAB represents public .NET fields as properties.

MATLAB represents .NET properties that take an argument as methods.
For more information, see “Call .NET Properties That Take an Argument”
on page 8-22.

8-17

8 Using .NET Libraries from MATLAB®

How MATLAB Maps C# Property and Field Access
Modifiers
MATLAB maps C# keywords to MATLAB property attributes, as shown in
the following table.

C# Property Keyword MATLAB Attribute

public, static Access = public

protected, private, internal Not visible to MATLAB

get, set Access = public

Get GetAccess = public, SetAccess =
private

Set SetAccess = public, GetAccess =
private

MATLAB maps C# keywords to MATLAB field attributes, as shown in the
following table.

C# Field Keyword MATLAB Mapping

public Supported

protected, private, internal,
protected internal

Not visible to MATLAB

For more information about MATLAB properties, see “Property Attributes”.

8-18

Using .NET Methods in MATLAB®

Using .NET Methods in MATLAB

In this section...

“Calling .NET Methods” on page 8-19

“Calling .NET Generic Methods” on page 8-21

“Calling .NET Methods with Optional Arguments” on page 8-21

“Calling .NET Extension Methods” on page 8-22

“Call .NET Properties That Take an Argument” on page 8-22

“How MATLAB Represents .NET Operators” on page 8-23

“Limitations to Support of .NET Methods” on page 8-24

Calling .NET Methods
The following topics describe using .NET methods in MATLAB.

• “Getting Method Information” on page 8-19

• “C# Method Access Modifiers” on page 8-20

• “VB.NET Method Access Modifiers” on page 8-20

• “Reading Method Signatures” on page 8-20

Getting Method Information
Use the following MATLAB functions to view the methods of a class. You
can use these functions without creating an instance of the class. These
functions do not list generic methods; use your product documentation to
get information on generic methods.

• methods — View method names

• methods with '-full' option — View method names with argument list

• methodsview— Graphical representation of method list

You might find the methodsview window easier to use as a reference
guide because you do not need to scroll through the Command Window

8-19

8 Using .NET Libraries from MATLAB®

to find information. For example, open a methodsview window for the
System.String class:

methodsview('System.String')

C# Method Access Modifiers
MATLAB maps C# keywords to MATLAB method access attributes, as shown
in the following table.

C# Method Keyword MATLAB Attribute

ref RHS, LHS

out LHS

params Array of particular type

protected, private, internal,
protected internal

Not visible to MATLAB

VB.NET Method Access Modifiers
MATLAB maps VB.NET keywords to MATLAB method access attributes, as
shown in the following table.

VB.NET Method Keyword MATLAB Attribute

ByRef LHS, RHS

ByVal RHS

Optional Mandatory

Reading Method Signatures
MATLAB uses the following rules to populate method signatures.

• obj is the output from the constructor.

• this is the object argument.

• RetVal is the return type of a method.

• All other arguments use the .NET metadata.

8-20

Using .NET Methods in MATLAB®

MATLAB uses the following rules to select a method signature.

• Number of inputs

• Input type

• Number of outputs

Calling .NET Generic Methods
Use the NET.invokeGenericMethod function to call a generic method.

Calling .NET Methods with Optional Arguments
MATLAB displays optional arguments in a method signature using the
optional<T> syntax, where T is the specific type. This feature is available in
.NET Framework Version 4.0 and above.

To use a default method argument, pass an instance of
System.Reflection.Missing.Value.

Skipping Optional Arguments
If the method is not overloaded, you are not required to fill in all optional
values at the end of a parameter list. For examples, see “Skip Optional
Arguments” on page 8-100.

Determining Which Overloaded Method Is Invoked
If a .NET class has overloaded methods with optional arguments, MATLAB
picks the method matching the exact number of input arguments.

If the optional arguments of the methods are different by type, number, or
dimension, MATLAB first compares the types of the mandatory arguments. If
the types of the mandatory arguments are different, MATLAB chooses the
first overloaded method defined in the class. If the types of the mandatory
arguments are the same, you must specify enough optional arguments so
that there is only one possible matching .NET method. Otherwise, MATLAB
throws an error. For examples, see “Call Overloaded Methods” on page 8-101.

8-21

8 Using .NET Libraries from MATLAB®

Support for ByRef Attribute in VB.NET
The rules for optional ByRef arguments are the same as for other method
arguments, as described in “VB.NET Method Access Modifiers” on page 8-20.
ByRef arguments on the RHS appear as optional and behave like any other
optional argument.

Calling .NET Extension Methods
Unlike C# applications, MATLAB handles an extension method as a
static method of the class that defines the method. Refer to your product
documentation for the namespace and class name you need to call such
methods.

For information about extension methods, see the MSDN article at
http://msdn.microsoft.com/en-us/library/bb383977(v=VS.90).aspx.

Call .NET Properties That Take an Argument
MATLAB represents a property that takes an argument as a method. For
example, the System.String class has two properties, Chars and Length. The
Chars property gets the character at a specified character position in the
System.String object. For example:

str = System.String('my new string');
methods(str)

Display of System.String Methods

Methods for class System.String:

Chars Normalize TrimStart
Clone PadLeft addlistener
CompareTo PadRight char
Contains Remove delete
CopyTo Replace eq
EndsWith Split findobj
Equals StartsWith findprop
GetEnumerator String ge
GetHashCode Substring gt
GetType ToCharArray isvalid

8-22

http://msdn.microsoft.com/en-us/library/bb383977(v=VS.90).aspx

Using .NET Methods in MATLAB®

GetTypeCode ToLower le
IndexOf ToLowerInvariant lt
IndexOfAny ToString ne
Insert ToUpper notify
IsNormalized ToUpperInvariant
LastIndexOf Trim
LastIndexOfAny TrimEnd

Static methods:

Compare Intern op_Equality
CompareOrdinal IsInterned op_Inequality
Concat IsNullOrEmpty
Copy IsNullOrWhiteSpace
Format Join

Notice that MATLAB displays the Chars property as a method.

The Chars method has the following signature.

Return Type Name Arguments

char scalar RetVal Chars (System.String this,
int32 scalar index)

To see the first character, type:

Chars(str,0)

ans =
m

How MATLAB Represents .NET Operators
MATLAB supports overloaded operators, such as the C# operator symbols
+ and *, as shown in the following table. MATLAB implements all
other overloaded operators, such as % and +=, by their static method
names, op_Modulus and op_AdditionAssignment. For a complete
list of operator symbols and the corresponding operator names, see
http://msdn.microsoft.com/en-us/library/2sk3x8a7(VS.71).aspx on
the Microsoft Developer Network Web site.

8-23

http://msdn.microsoft.com/en-us/library/2sk3x8a7(VS.71).aspx

8 Using .NET Libraries from MATLAB®

C++ operator symbol .NET operator MATLAB methods

+ (binary) op_Addition plus, +

- (binary) op_Subtraction minus, -

* (binary) op_Multiply mtimes, *

/ op_Division mrdivide, /

&& op_LogicalAnd and, &

|| op_LogicalOr or, |

== op_Equality eq, ==

> op_GreaterThan gt, >

< op_LessThan lt, <

!= op_Inequality ne, ~=

>= op_GreaterThanOrEqual ge, >=

<= op_LessThanOrEqual le, <=

- (unary) op_UnaryNegation uminus, -a

+ (unary) op_UnaryPlus uplus, +a

Limitations to Support of .NET Methods
The methods and methodsview functions do not list generic methods.

Overloading MATLAB Functions
If your application implements a method with the same name as a MATLAB
function, the method must have the same signature as the MATLAB function.
Otherwise, MATLAB throws an error. For information about how MATLAB
handles overloaded functions, see the following topics:

• “Overloading Functions for Your Class”

• “Methods That Modify Default Behavior”

8-24

Working with .NET Events in MATLAB®

Working with .NET Events in MATLAB

In this section...

“Use .NET Events in MATLAB” on page 8-25

“Limitations to Support of .NET Events” on page 8-26

Use .NET Events in MATLAB
Use the addlistener function to handle events from .NET objects.

For example, you can monitor changes to files using the
System.IO.FileSystemWatcher class in the System assembly. Create the
following event handler, eventhandlerChanged.m:

function eventhandlerChanged(source,arg)
disp('TXT file changed')
end

Create a FileSystemWatcher object fileObj and watch the Changed event for
files with a .txt extension in the folder C:\work\temp.

fileObj = System.IO.FileSystemWatcher('c:\work\temp');
fileObj.Filter = '*.txt';
fileObj.EnableRaisingEvents = true;
addlistener(fileObj,'Changed',@eventhandlerChanged);

If you modify and save a .txt file in the C:\work\temp folder, MATLAB
displays:

TXT file changed

The FileSystemWatcher documentation says that a simple file operation can
raise multiple events.

To turn off the event handler, type:

fileObj.EnableRaisingEvents = false;

8-25

8 Using .NET Libraries from MATLAB®

Limitations to Support of .NET Events

MATLAB Support of Standard Signature of an Event Handler
Delegate
An event handler in C# is a delegate with the following signature:

public delegate void MyEventHandler(object sender, MyEventArgs e)

The argument sender specifies the object that fired the event. The argument
e holds data that can be used in the event handler. The class MyEventArgs is
derived from the .NET Framework class EventArgs. MATLAB only handles
events with this standard signature.

8-26

Using Arrays with .NET Applications

Using Arrays with .NET Applications

In this section...

“Passing MATLAB Arrays to .NET” on page 8-27

“Accessing .NET Array Elements in MATLAB” on page 8-27

“Converting .NET Arrays to Cell Arrays” on page 8-28

“Converting .NET Jagged Arrays to MATLAB Arrays” on page 8-30

“Limitations to Support of .NET Arrays” on page 8-30

Passing MATLAB Arrays to .NET
MATLAB automatically converts arrays to .NET types, as described in the
MATLAB® Primitive Type Conversion Table on page 8-110. To pass an
array of strings, create a cell array. For all other types, use the MATLAB
NET.createArray function.

Accessing .NET Array Elements in MATLAB
You access elements of a .NET array with subscripts, just like with MATLAB
arrays.

You cannot refer to the elements of a multidimensional .NET array with a
single subscript (linear indexing) like you can in MATLAB, as described in
“Matrix Indexing”. You must specify the index for each dimension of the
.NET array.

You can only use scalar indexing to access elements of a .NET array. The colon
operator, described in “Generating a Numeric Sequence”, is not supported.

Using the Get and Set Instance Functions
Alternatively, you can access elements of a .NET array using the Set and Get
instance functions. When using Set or Get you must use C# array indexing,
which is zero-based.

For example, create two System.String arrays, using the Set function and
direct assignment:

8-27

8 Using .NET Libraries from MATLAB®

d1 = NET.createArray('System.String',3);
d1.Set(0, 'one');
d1.Set(1, 'two');
d1.Set(2, 'three');

d2 = NET.createArray('System.String',3);
d2(1) = 'one';
d2(2) = 'two';
d2(3) = 'zero';

To compare the values of the first elements in each array, type:

System.String.Compare(d1(1),d2.Get(0))

MATLAB displays 0, meaning the strings are equal.

Converting .NET Arrays to Cell Arrays
You can convert .NET System.String and System.Object arrays to MATLAB
cell arrays using the cell function. Elements of the cell array are of the
MATLAB type closest to the .NET type, described in “.NET Type to MATLAB
Type Mapping” on page 8-117.

For example, create a cell array of names of the folders in your c:\ folder,
using the .NET Framework System.IO.Directory class:

myList = cell(System.IO.Directory.GetDirectories('c:\'));

Converting Nested System.Object Arrays
The conversion is not recursive for a System.Object array contained within
a System.Object array. You must use the cell function to convert each
System.Object array.

To run this example, build the NetDocCell assembly using the directions in
“Building a .NET Application for MATLAB Examples” on page 8-14. The
source code is here:

C# NetDocCell Source File

using System;

8-28

Using Arrays with .NET Applications

/*
* C# Assembly used in MATLAB .NET documentaion.
* Method getNewData is used to demonstrate
* how MATLAB handles a System.Object
* that includes another System.Object.
*/

namespace NetDocCell
{

public class MyGraph
{

public Object[] getNewData()
/*
* Create a System.Object array to use in MATLAB examples.
* Returns containerArr System.Object array containing:
* fLabel System.String object
* plotData System.Object array containing:
* xLabel System.String object
* doubleArr System.Double array

*/
{

String fLabel = "Figure Showing New Graph Data";
Double[] doubleArr = {

18, 32, 3.133, 44, -9.9, -13, 33.03 };
String xLabel = "X-Axis Label";
Object[] plotData = { xLabel, doubleArr };
Object[] containerArr = { fLabel, plotData };
return containerArr;

}
}

}

Load the assembly and create a cell array, mlData:

dllPath = fullfile('c:','work','NetDocCell.dll');
NET.addAssembly(dllPath);
obj = NetDocCell.MyGraph;
mlData = cell(obj.getNewData)

The cell array contains elements of the following type:

8-29

8 Using .NET Libraries from MATLAB®

mlData =
[1x1 System.String] [1x1 System.Object[]]

To access the contents of the System.Object array, create another cell array
mlPlotData:

mlPlotData = cell(mlData{2})

This cell array contains elements of the following type:

mlPlotData =
[1x1 System.String] [1x1 System.Double[]]

For another example, see “Pass Cell Arrays of .NET Data” on page 8-104.

Converting .NET Jagged Arrays to MATLAB Arrays
You must convert a .NET jagged array before using it in a MATLAB command.

• If the shape of the array is rectangular, use the corresponding MATLAB
numeric function.

• If the array is not rectangular, use the cell function.

If the jagged array is multidimensional, you must individually convert the
arrays in each dimension.

Limitations to Support of .NET Arrays
MATLAB does not support:

• Arrays which specify a lower bound

• Concatenating .NET objects into an array

• The end function as the last index in a .NET array

• Array indices of complex values

• Autoconversion of char or cell arrays to jagged array arguments.

• Autoconversion of MATLAB arrays to mulidimensional jagged array
arguments.

8-30

Pass Jagged Arrays

Pass Jagged Arrays

In this section...

“Create System.Double .NET Jagged Array” on page 8-31

“Call .NET Method with System.String Jagged Array Arguments” on page
8-32

“Call .NET Method with Multidimensional Jagged Array Arguments” on
page 8-33

Create System.Double .NET Jagged Array
This example shows how to create a .NET jagged array of System.Double
using the NET.createArray function.

Create a 3 element array.

jArr = NET.createArray('System.Double[]',3)

jArr =

System.Double[][] handle
Package: System

Properties:
Length: 3

LongLength: 3
Rank: 1

SyncRoot: [1x1 System.Double[][]]
IsReadOnly: 0

IsFixedSize: 1
IsSynchronized: 0

Methods, Events, Superclasses

You can pass jArr to any .NET method with an input or output argument
of type System.Double[][].

8-31

8 Using .NET Libraries from MATLAB®

Call .NET Method with System.String Jagged Array
Arguments
This example shows how to create an array of MATLAB strings to pass to a
method, MethodStringArr, with a System.String[][] input argument.

The following is the MATLAB function signature for MethodStringArr.

Return Type Name Arguments

System.String[][]
RetVal

MethodStringArr (NetPackage.StringClass
this,
System.String[][] arr)

The MATLAB strings you want to pass to the method are:

str1 = {'this', 'is'};
str2 = 'jagged';

Create a variable, netArr, of System.String arrays, which contains
two arrays. Using the NET.createArray, the typeName for this array is
System.String[], and the dimension is 2.

netArr = NET.createArray('System.String[]',2);

The arrays contain empty strings.

Create System.String arrays to correspond to the MATLAB strings, str1
and str2.

netArr(1) = NET.createArray('System.String',2);
netArr(2) = NET.createArray('System.String',1);

Assign str1 and str2 to netArr.

netArr(1) = str1;
netArr(2,1) = str2;

Because str2 is a scalar and netArr(2) expects an array, you must assign
str2 to the specific element netArr(2,1).

8-32

Pass Jagged Arrays

Now you can pass netArr to the MethodStringArr method.

class(netArr)

ans =
System.String[][]

Call .NET Method with Multidimensional Jagged
Array Arguments
This example shows how to create a MATLAB array to pass to a method,
MethodMultiDArr, with a multidimensional jagged array input argument of
System.Double type.

The following is the MATLAB function signature for MethodMultiDArr. The
input is a multidimensional jagged array that contains single dimensional
elements.

Return Type Name Arguments

System.Double[][,]
RetVal

MethodMultiDArr (NetPackage.NumericClass
this,
System.Double[][,] arr)

Create a 2-by-3 array with typeName of System.Double[].

arr = NET.createArray('System.Double[]',2,3);

The elements are empty arrays.

The MATLAB arrays you want to pass to the method are:

A1 = [1 2 3];
A2 = [5 6 7 8];

MATLAB automatically converts a numeric array to the equivalent .NET type.

arr(1,1) = A1;
arr(1,2) = A2;

8-33

8 Using .NET Libraries from MATLAB®

Array arr is a System.Double[][,] jagged array.

arr

arr =

System.Double[][,] handle
Package: System

Properties:
Length: 6

LongLength: 6
Rank: 2

SyncRoot: [1x1 System.Double[][,]]
IsReadOnly: 0

IsFixedSize: 1
IsSynchronized: 0

Methods, Events, Superclasses

Now you can pass arr to the MethodMultiDArr method.

8-34

.NET Delegates in MATLAB®

.NET Delegates in MATLAB

In this section...

“.NET Delegates” on page 8-35

“Call .NET Delegates in MATLAB” on page 8-36

“Create Delegates from .NET Object Methods” on page 8-37

“Create Delegate Instances Bound to .NET Methods” on page 8-38

“Call Delegates With out and ref Type Arguments” on page 8-39

“Combine and Remove .NET Delegates” on page 8-40

“Calling .NET Methods Asynchronously” on page 8-41

“Limitations to Support of .NET Delegates” on page 8-45

.NET Delegates
In the .NET Framework, a delegate is a type that defines a method signature.
It lets you pass a function as a parameter. The use of delegates enables .NET
applications to make calls into MATLAB callback functions or class instance
methods. For the rules MATLAB uses to define the signature of a callback
function or class method, see “Reading Method Signatures” on page 8-20 in
Using a .NET Object. For a complete description of delegates and when to use
them, consult an outside resource, such as the Microsoft Developer Network.

There are three steps to using delegates:

• Declaration — Your .NET application contains the declaration. You cannot
declare a delegate in the MATLAB language.

• Instantiation — In MATLAB, create an instance of the delegate and
associate it with a specific MATLAB function or .NET object method.

• Invocation — Call the function with specified input and output arguments.
Use the delegate name in place of the function name.

8-35

8 Using .NET Libraries from MATLAB®

Call .NET Delegates in MATLAB
This example shows you how to use a delegate in MATLAB. It creates a
delegate using a MATLAB function (char). For another example, see “Create
Delegates from .NET Object Methods” on page 8-37.

This example consists of the following tasks:

• “Declare a Delegate in a C# Assembly” on page 8-36

• “Load the Assembly Containing the Delegate into MATLAB” on page 8-36

• “Select a MATLAB Function” on page 8-36

• “Create an Instance of the Delegate in MATLAB” on page 8-37

• “Invoke the Delegate Instance in MATLAB” on page 8-37

Declare a Delegate in a C# Assembly
The C# example NetDocDelegate.cs, in the
matlabroot/extern/examples/NET/NetSample folder, defines delegates used
in the following examples. To see the code, open the file in MATLAB Editor.
To run the examples, build the NetDocDelegate assembly as described in
“Building a .NET Application for MATLAB Examples” on page 8-14.

Load the Assembly Containing the Delegate into MATLAB
If the NetDocDelegate assembly is in your c:\work folder, load the file with
the command:

dllPath = fullfile('c:','work','NetDocDelegate.dll');
NET.addAssembly(dllPath);

Select a MATLAB Function
The delInteger delegate encapsulates any method that takes an integer
input and returns a string. The MATLAB char function, which converts
a nonnegative integer into a character array (string), has a signature that
matches the delInteger delegate. For example, the following command
displays the ! character:

char(33)

8-36

.NET Delegates in MATLAB®

Create an Instance of the Delegate in MATLAB
To create an instance of the delInteger delegate, pass the function handle
of the char function:

myFunction = NetDocDelegate.delInteger(@char);

Invoke the Delegate Instance in MATLAB
Use myFunction the same as you would char. For example, the following
command displays the ! character:

myFunction(33)

Create Delegates from .NET Object Methods
The following C# class defines the methods AddEggs and AddFlour, which
have signatures matching the delInteger delegate:

C# Recipe Source File

using System;
namespace Recipe
{

public class MyClass
{

public string AddEggs(double n)
{

return "Add " + n + " eggs";
}

public string AddFlour(double n)
{

return "Add " + n + " cups flour";
}

}
}

Build the Recipe assembly, and then load it and create a delegate myFunc
using AddEggs as the callback:

NET.addAssembly(dllPath);
NET.addAssembly('c:\work\Recipe.dll');

8-37

8 Using .NET Libraries from MATLAB®

obj = Recipe.MyClass;
myFunc = NetDocDelegate.delInteger(@obj.AddEggs);
myFunc(2)

ans =
Add 2 eggs

Create Delegate Instances Bound to .NET Methods
For a C# delegate defined as:

namespace MyNamespace
{

public delegate void MyDelegate();
}

MATLAB creates the following constructor signature.

Return Type Name Arguments

MyNamespace.MyDelegate
obj

MyDelegate (target,
string methodName)

The argument target is one of the following:

• An instance of the invocation target object when binding to the instance
method

• A string with fully qualified .NET class name when binding to a static
method

methodName is a string specifying the callback method name.

Example — Create a Delegate Instance Associated with a .NET
Object Instance Method
For the following C# delegate and class definition:

namespace MyNamespace
{

public delegate void MyDelegate();

8-38

.NET Delegates in MATLAB®

public class MyClass
{

public void MyMethod(){}
}

}

To instantiate the delegate in MATLAB, type:

targetObj = MyNamespace.MyClass();
delegateObj = MyNamespace.MyDelegate(targetObj, 'MyMethod');

Example — Create a Delegate Instance Associated with a Static
.NET Method
For the following C# delegate and class definition:

namespace MyNamespace
{

public delegate void MyDelegate();

public class MyClass
{

public static void MyStaticMethod(){}
}

}

To instantiate the delegate in MATLAB, type:

delegateObj=MyNamespace.MyDelegate(...
'MyNamespace.MyClass','MyStaticMethod');

Call Delegates With out and ref Type Arguments
The MATLAB rules for mapping out and ref types for delegates are the same
as for methods. See “C# Method Access Modifiers” on page 8-20.

For example, the following C# statement declares a delegate with a ref
argument:

public delegate void delref(ref Double refArg);

8-39

8 Using .NET Libraries from MATLAB®

The signature for an equivalent MATLAB delegate function maps refArg
as both RHS and LHS arguments:

function refArg = myFunc(refArg)

The following C# statement declares a delegate with an out argument:

public delegate void delout(
Single argIn,
out Single argOut);

The signature for an equivalent MATLAB delegate function maps argOut
as an LHS argument:

function argOut = myFunc(argIn)

Combine and Remove .NET Delegates
MATLAB provides the instance method Combine, that lets you combine
a series of delegates into a single delegate. The Remove and RemoveAll
methods delete individual delegates. For more information, refer to the .NET
Framework Class Library, as described in “To Learn More About the .NET
Framework” on page 8-6.

For example, create the following MATLAB functions to use with the
NetDocDelegate.delInteger delegate:

function out = action1(n)
out = 'Add flour';
disp(out);
end

function out = action2(n)
out = 'Add eggs';
disp(out);
end

Create delegates step1 and step2:

step1 = NetDocDelegate.delInteger(@action1);
step2 = NetDocDelegate.delInteger(@action2);

8-40

.NET Delegates in MATLAB®

To combine into a new delegate, mixItems, type:

mixItems = step1.Combine(step2);

Or, type:

mixItems = step1.Combine(@action2);

Invoke mixItems:

result = mixItems(1);

In this case, the function action2 follows action1:

Add flour
Add eggs

The value of result is the output from the final delegate (step2).

result =
Add eggs

You also can use the System.Delegate class static methods, Combine, Remove
and RemoveAll.

To remove a step1 from mixItems, type:

step3 = mixItems.Remove(step1);

Calling .NET Methods Asynchronously
It is possible to call a synchronous method asynchronously in MATLAB.
With some modifications, you can use the Microsoft BeginInvoke and
EndInvoke methods. For more information, refer to the MSDN article “
Calling Synchronous Methods Asynchronously ” at http://msdn.microsoft.

You can use delegates to call a synchronous method asynchronously by using
the BeginInvoke and EndInvoke methods. If the thread that initiates the
asynchronous call does not need to be the thread that processes the results,
you can execute a callback method when the call completes. For information
about using a callback method, see “Calling a Method Asynchronously Using
a Callback When an Asynchronous Call Finishes” on page 8-42.

8-41

http://msdn.microsoft.com/en-us/library/2e08f6yc.aspx
http://msdn.microsoft.com/en-us/library/2e08f6yc.aspx

8 Using .NET Libraries from MATLAB®

Note MATLAB is a single-threaded application. Therefore, handling
asynchronous calls in the MATLAB environment might result in deadlocks.

• “Calling a Method Asynchronously Using a Callback When an
Asynchronous Call Finishes” on page 8-42

• “Calling a Method Asynchronously Without a Callback” on page 8-43

• “Using EndInvoke With out and ref Type Arguments” on page 8-45

• “Using Polling to Detect When Asynchronous Call Finishes” on page 8-45

Calling a Method Asynchronously Using a Callback When an
Asynchronous Call Finishes
You can execute a callback method when an asynchronous call completes. A
callback method executes on a different thread than the thread that processes
the results of the asynchronous call.

The following is an overview of the procedure. If you do not use a callback
function, follow the procedure in “Calling a Method Asynchronously Without
a Callback” on page 8-43.

• Select or create a MATLAB function to execute asynchronously.

• Select or create a C# delegate and associate it with the MATLAB function.

• Create a MATLAB callback function with a System.AsyncCallback
Delegate delegate signature. The signature, shown at the MSDN Web
site, is:

public delegate void AsyncCallback(IAsyncResult ar)

1 Using MATLAB code, initiate the asynchronous call using the BeginInvoke
method, specifying the callback delegate and, if required, object parameters.

2 Continue executing commands in MATLAB.

3 When the asynchronous function completes, MATLAB calls the callback
function, which executes the EndInvoke method to retrieve the results.

8-42

http://msdn.microsoft.com/en-us/library/system.asynccallback.aspx
http://msdn.microsoft.com/en-us/library/system.asynccallback.aspx

.NET Delegates in MATLAB®

Callback Example. In this example, create the following MATLAB function
to execute asynchronously:

function X = DivideFunction(A, B)
if B ~= 0

X = A / B;
else

errid = 'MyID:DivideFunction:DivisionByZero';
error(errid, 'Division by 0 not allowed.');

end
end

Create the following MATLAB function, which will execute as the callback
when the asynchronous method invocation completes. This function displays
the result value of the EndInvoke method.

function myCallback(asyncRes)
result = asyncRes.AsyncDelegate.EndInvoke(asyncRes);
disp(result);
end

Use the del2Integer delegate, defined in the NetDocDelegate assembly:

public delegate Int32 del2Integer(Int32 arg1, Int32 arg2);

Run the example:

% Create the delegate
divDel = NetDocDelegate.del2Integer(@DivideFunction);
A=10;
B=5;
% Initiate the asynchronous call.
asyncRes = divDel.BeginInvoke(A,B,@myCallback,[]);

MATLAB displays the result: 2

Calling a Method Asynchronously Without a Callback
The following is an overview of the procedure. If you want to use a callback
function, follow the procedure in “Calling a Method Asynchronously Using a
Callback When an Asynchronous Call Finishes” on page 8-42.

8-43

8 Using .NET Libraries from MATLAB®

• Select or create a MATLAB function to execute asynchronously.

• Select or create a C# delegate and associate it with the MATLAB function.

1 In MATLAB, initiate the asynchronous call using the BeginInvokemethod.

2 Continue executing commands in MATLAB.

3 Poll for asynchronous call completion using the MATLAB pause function.

4 When the asynchronous function completes, call the EndInvoke method to
retrieve the results.

Example Without Callback. In this example, create the following MATLAB
function, myFunction:

% MATLAB function to execute asynchrounously
function res = myFunction(strValue)
res = strValue;
end

Use the delString delegate, defined in the NetDocDelegate assembly:

public delegate string delString(string message);

In MATLAB, create the delegate, myDelegate, define the input values, and
start the asynchronous call:

myDelegate = NetDocDelegate.delString(@myFunction);
A='Hello';
asyncRes = myDelegate.BeginInvoke(A,[],[]);

The BeginInvoke method returns the object, asyncRes, which you use to
monitor the progress of the asynchronous call. Poll for results, using the
MATLAB pause function to let MATLAB process the events:

while asyncRes.IsCompleted ~= true
pause(0.01);

end

Retrieve and display the results of the asynchronous call:

8-44

.NET Delegates in MATLAB®

result = myDelegate.EndInvoke(asyncRes);
disp(result)

Hello

Using EndInvoke With out and ref Type Arguments
The MATLAB delegate signature for EndInvoke follows special mapping rules
if your delegate has out or ref type arguments. For information about the
mapping, see “Call Delegates With out and ref Type Arguments” on page 8-39.
For examples, see the EndInvoke reference page.

Using Polling to Detect When Asynchronous Call Finishes
For MATLAB to process the event that executes the delegate’s callback on the
main thread, you must call the MATLAB pause (or a similar) function.

Limitations to Support of .NET Delegates
MATLAB does not support associating a delegate instance with a generic
.NET method.

When calling a method asynchronously, use the technique described in
“Calling a Method Asynchronously Without a Callback” on page 8-43. Be
aware that:

• MATLAB is a single-threaded application. Therefore, handling
asynchronous calls in the MATLAB environment might result in deadlocks.

• For the technique described in the MSDN topic , MATLAB does not support
the use of the WaitOne() method overload with no arguments.

• You cannot call EndInvoke to wait for the asynchronous call to complete.

8-45

8 Using .NET Libraries from MATLAB®

.NET Enumerations in MATLAB

In this section...

“Overview of .NET Enumerations” on page 8-46

“Default Methods for an Enumeration” on page 8-47

“Underlying Values” on page 8-48

“Using the NetDocEnum Example Assembly” on page 8-49

“Work with Members of a .NET Enumeration” on page 8-49

“Refer to a .NET Enumeration Member” on page 8-51

“Display .NET Enumeration Members as Character Strings” on page 8-52

“Convert .NET Enumeration Values to Type Double” on page 8-52

“Iterate Through a .NET Enumeration” on page 8-52

“Use .NET Enumerations to Test for Conditions” on page 8-54

“Use Bit Flags with .NET Enumerations” on page 8-56

“Read Special System Folder Path” on page 8-59

“Limitations to Support of .NET Enumerations” on page 8-60

Overview of .NET Enumerations
MATLAB allows you to work with .NET enumerations using features of
the MATLAB enumeration class and some features unique to the .NET
Framework.

Terms you should know:

• Enumeration — In MATLAB, a class having a finite set of named instances.

• Enumeration member — Named instance of an enumeration class.

• Underlying value — Numeric value associated with an enumeration
member.

Enumerations contain the following information:

8-46

.NET Enumerations in MATLAB®

• Members

• Methods

• Underlying Values

In this topic, the term enumeration refers to a .NET enumeration.

Note The MATLAB language supports user-defined enumeration classes. If
you are using enumerations defined in MATLAB, refer to the topics under
Enumerations.

Default Methods for an Enumeration
By default, MATLAB provides the following methods for a .NET enumeration:

• Relational operators — eq, ne, ge, gt, le, and lt.

• Conversion methods — char, double, and a method to get the underlying
value.

• Bit-wise methods — Only for enumerations with the System.Flags
attribute.

For example, type:

methods('System.DayOfWeek')

Methods for class System.DayOfWeek:

CompareTo eq
DayOfWeek ge
Equals gt
GetHashCode int32
GetType le
GetTypeCode lt
ToString ne
char
double

The method to get the underlying value is int32.

8-47

8 Using .NET Libraries from MATLAB®

For examples using these methods, see “Example Using Relational
Operations” on page 8-55, “Example Using Switch Statements” on page 8-54,
and “Display .NET Enumeration Members as Character Strings” on page 8-52.

The NetDocEnum.MyDays enumeration, which has the Flags attribute, has
the bit-wise methods. To list the methods, type:

methods('NetDocEnum.MyDays')

Methods for class NetDocEnum.MyDays:

CompareTo char
Equals double
GetHashCode eq
GetType ge
GetTypeCode gt
MyDays int32
ToString le
bitand lt
bitnot ne
bitor
bitxor

For more information about bit-wise operators, see “Use Bit Flags with .NET
Enumerations” on page 8-56.

Underlying Values
MATLAB supports enumerations of any numeric type.

To find the underlying type of an enumeration, use the System.Enum static
method GetUnderlyingType. For example, the following C# statement in the
NetDocEnum assembly declares the enumeration Range:

public enum Range : long {Max = 2147483648L,Min = 255L}

To display the underlying type:

maxValue = NetDocEnum.Range.Max;
System.Enum.GetUnderlyingType(maxValue.GetType).FullName

8-48

.NET Enumerations in MATLAB®

ans =
System.Int64

Using the NetDocEnum Example Assembly
Some of the examples in this topic use the System.DayOfWeek enumeration,
which is part of the .NET Framework. The C# example NetDocEnum.cs, in the
matlabroot/extern/examples/NET/NetSample folder, defines enumerations
used in other examples. To see the code, open the file in MATLAB Editor. To
run the examples, build the NetDocEnum assembly as described in “Building a
.NET Application for MATLAB Examples” on page 8-14.

If the NetDocEnum assembly is in your c:\work folder, load the file:

dllPath = fullfile('c:','work','NetDocEnum.dll');
asm = NET.addAssembly(dllPath);
asm.Enums

ans =
'NetDocEnum.MyDays'
'NetDocEnum.Range'

Work with Members of a .NET Enumeration
To display the member names of an enumeration, use the MATLAB
enumeration function. For example, to list the member names of the
System.DayOfWeek enumeration, type:

enumeration('System.DayOfWeek')

Enumeration members for class 'System.DayOfWeek':
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

You cannot use the enumeration command to return arrays of .NET
enumeration objects. You can read the names and values of the enumeration
into arrays, using the System.Enum methods GetNames, GetValues, and

8-49

8 Using .NET Libraries from MATLAB®

GetType. For more information about using these methods, see “Information
About System.Enum Methods” on page 8-53.

For example, to create arrays allNames and allValues for the
System.DayOfWeek enumeration, type:

myDay = System.DayOfWeek;
allNames = System.Enum.GetNames(myDay.GetType);
allValues = System.Enum.GetValues(myDay.GetType);

The class of the names array is System.String, while the class of the values
array is the enumeration type System.DayOfWeek.

whos all*

Name Size Bytes Class

allNames 1x1 112 System.String[]
allValues 1x1 112 System.DayOfWeek[]

Although the types are different, the information MATLAB displays is the
same. For example, type:

allNames(1)

ans =
Sunday

Type:

allValues(1)

ans =
Sunday

For an example that uses arrays, see “Iterate Through a .NET Enumeration”
on page 8-52. For information about using System.String, see “How
MATLAB Handles System.String” on page 8-118.

8-50

.NET Enumerations in MATLAB®

Refer to a .NET Enumeration Member

• “Overview” on page 8-51

• “Using the Implicit Constructor” on page 8-51

Overview
You use an enumeration member in your code as an instance of an
enumeration. To refer to an enumeration member, use the C# namespace,
enumeration, and member names:

Namespace.EnumName.MemberName

For example, the System namespace in the .NET Framework class library has
a DayOfWeek enumeration. The members of this enumeration are:

Enumeration members for class 'System.DayOfWeek':
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

To create a variable with the value Thursday, type:

gameDay = System.DayOfWeek.Thursday;
whos

Name Size Bytes Class

gameDay 1x1 104 System.DayOfWeek

Using the Implicit Constructor
The implicit constructor, Namespace.EnumName, creates a member with the
default value of the underlying type. For example, the NetDocEnum.Range
enumeration has the following members:

8-51

8 Using .NET Libraries from MATLAB®

Enumeration members for class 'NetDocEnum.Range':
Max
Min

Type:

x = NetDocEnum.Range
whos x

x =
0

Name Size Bytes Class

x 1x1 104 NetDocEnum.Range

Display .NET Enumeration Members as Character
Strings
Use the char method to get the descriptive name of an enumeration. For
example, type:

gameDay = System.DayOfWeek.Thursday;
['Next volleyball game is ',char(gameDay)]

ans =
Next volleyball game is Thursday

Convert .NET Enumeration Values to Type Double
To convert a value to a MATLAB double, type:

gameDay = System.DayOfWeek.Thursday;
myValue = double(gameDay)

myValue =
4

Iterate Through a .NET Enumeration

• “Overview” on page 8-53

8-52

.NET Enumerations in MATLAB®

• “Information About System.Enum Methods” on page 8-53

Overview
To display all member names of the System.DayOfWeek enumeration, create a
System.String array of names. Use the Length property of this array to find
the number of members. For example:

myDay = System.DayOfWeek;
allNames = System.Enum.GetNames(myDay.GetType);
disp(['Members of ' class(myDay)]);
for idx = 1:allNames.Length

disp(allNames(idx));
end

Members of System.DayOfWeek
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Information About System.Enum Methods
To create MATLAB arrays from an enumeration, use the static System.Enum
methods GetNames and GetValues. The input argument for these methods
is an enumeration type. Use the GetType method for the type of the current
instance. To display the signatures for these methods, type:

methodsview('System.Enum')

Look at the following signatures:

8-53

8 Using .NET Libraries from MATLAB®

Qualifiers Return Type Name Arguments

System.Type GetType (System.Enum
this)

Static System.String[] GetNames (System.Type
enumType)

Static System.Array GetValues (System.Type
enumType)

To use GetType, create an instance of the enumeration. For example:

myEnum = System.DayOfWeek;

The enumType for myEnum is:

myEnumType = myEnum.GetType;

To create an array of names using the GetNames method, type:

allNames = System.Enum.GetNames(myEnumType);

Alternatively:

allNames = System.Enum.GetNames(myEnum.GetType);

Use .NET Enumerations to Test for Conditions

• “Example Using Switch Statements” on page 8-54

• “Example Using Relational Operations” on page 8-55

With relational operators, you can use enumeration members in if and
switch statements and other functions that test for equality.

Example Using Switch Statements
The following Reminder function displays a message depending on the day
of the week:

function Reminder(day)
% day = System.DayOfWeek enumeration value

8-54

.NET Enumerations in MATLAB®

% Add error checking here
switch(day)

case System.DayOfWeek.Monday
disp('Department meeting at 10:00');

case System.DayOfWeek.Tuesday
disp('Meeting Free Day!');

case {System.DayOfWeek.Wednesday System.DayOfWeek.Friday}
disp('Team meeting at 2:00');

case System.DayOfWeek.Thursday
disp('Volley ball night');

end
end

For example, type:

today = System.DayOfWeek.Wednesday;
Reminder(today)

ans =
Team meeting at 2:00

Example Using Relational Operations
Create the following function to display a message:

function VolleyballMessage(day)
% day = System.DayOfWeek enumeration value
if gt(day,System.DayOfWeek.Thursday)

disp('See you next week at volleyball.')
else

disp('See you Thursday!')
end
end

For a day before Thursday:

myDay = System.DayOfWeek.Monday;
VolleyballMessage(myDay)

See you Thursday!

8-55

8 Using .NET Libraries from MATLAB®

For a day after Thursday:

myDay = System.DayOfWeek.Friday;
VolleyballMessage(myDay)

See you next week at volleyball.

Use Bit Flags with .NET Enumerations

• “Overview” on page 8-56

• “Creating .NET Enumeration Bit Flags” on page 8-57

• “Removing a Flag from a Variable” on page 8-57

• “Replacing a Flag in a Variable” on page 8-58

• “Testing for Membership” on page 8-58

Overview
Many .NET languages support bit-wise operations on enumerations defined
with the System.Flags attribute. The MATLAB language does not have
equivalent operations, and, therefore, provides instance methods for
performing bit-wise operations on an enumeration object. The bit-wise
methods are bitand, bitnot, bitor, and bitxor.

An enumeration can define a bit flag. A bit flag lets you create instances of
an enumeration to store combinations of values defined by the members.
For example, files and folders have attributes, such as Archive, Hidden and
ReadOnly. For a given file, perform an operation based on one or more of these
attributes. With bit-wise operators, you can create and test for combinations.

To use bit-wise operators, the enumeration must have:

• The Flags attribute. In Framework Version 4, these enumerations also
have the HasFlag method.

• Values that correspond to powers of 2.

8-56

.NET Enumerations in MATLAB®

Creating .NET Enumeration Bit Flags
Use the NetDocEnum.MyDays enumeration in the following examples. For more
information, see “Using the NetDocEnum Example Assembly” on page 8-49.

Suppose you have the following scheduled activities:

• Monday — Department meeting at 10:00

• Wednesday and Friday — Team meeting at 2:00

• Thursday — Volley ball night

You can combine members of the MyDays enumeration to create MATLAB
variables using the bitor method, which joins two members. For example, to
create a variable teamMtgs of team meeting days, type:

teamMtgs = bitor(...
NetDocEnum.MyDays.Friday,...
NetDocEnum.MyDays.Wednesday);

Create a variable allMtgs of all days with meetings:

allMtgs = bitor(teamMtgs,...
NetDocEnum.MyDays.Monday);

To see which days belong to each variable, type:

teamMtgs
allMtgs

teamMtgs =
Wednesday, Friday

allMtgs =
Monday, Wednesday, Friday

Removing a Flag from a Variable
Suppose your manager cancels the Wednesday meeting this week. Use the
bitxor method to remove Wednesday from the allMtgs variable.

8-57

8 Using .NET Libraries from MATLAB®

thisWeekMtgs = bitxor(allMtgs,NetDocEnum.MyDays.Wednesday)

thisWeekMtgs =
Monday, Friday

Using a bit-wise method such as bitxor on allMtgs does not modify the
value of allMtgs. This example creates a new variable, thisWeekMtgs, which
contains the result of the operation.

Replacing a Flag in a Variable
Suppose you change the team meeting permanently from Wednesday to
Thursday. Use bitxor to remove Wednesday, and use bitor to add Thursday.
Since this is a permanent change, update the teamMtgs and allMtgs variables.

teamMtgs = bitor(...
(bitand(teamMtgs,...

bitnot(NetDocEnum.MyDays.Wednesday))),...
NetDocEnum.MyDays.Thursday);

allMtgs = bitor(teamMtgs,...
NetDocEnum.MyDays.Monday);

teamMtgs
allMtgs

teamMtgs =
Thursday, Friday

allMtgs =
Monday, Thursday, Friday

Testing for Membership
Create the following RemindMe function:

function RemindMe(day)
% day = NetDocEnum.MyDays enumeration
teamMtgs = bitor(...

NetDocEnum.MyDays.Friday,...
NetDocEnum.MyDays.Wednesday);

allMtgs = bitor(teamMtgs,...

8-58

.NET Enumerations in MATLAB®

NetDocEnum.MyDays.Monday);

if eq(day,bitand(day,teamMtgs))
disp('Team meeting today.')

elseif eq(day,bitand(day,allMtgs))
disp('Meeting today.')

else
disp('No meetings today!')

end
end

Use the RemindMe function:

today = NetDocEnum.MyDays.Monday;
RemindMe(today)

Meeting today.

Read Special System Folder Path

function result = getSpecialFolder(arg)
% Returns the special system folders such as "Desktop", "MyMusic" etc.
% arg can be any one of the enum element mentioned in this link
% http://msdn.microsoft.com/en-us/library/system.environment.specialfolder.
% e.g.
% >> getSpecialFolder('Desktop')
%
% ans =
% C:\Users\jsmith\Desktop

%get the type of SpecialFolder enum, this is a nested enum type.
specialFolderType = System.Type.GetType(...

'System.Environment+SpecialFolder');
%Get a list of all SpecialFolder enum values
folders = System.Enum.GetValues(specialFolderType);
enumArg = [];

%Find the matching enum value requested by the user
for i=1:folders.Length

if (strcmp(char(folders(i)), arg))

8-59

8 Using .NET Libraries from MATLAB®

enumArg = folders(i);
break;
end

end

%Validate
if(isempty(enumArg))

error('Invalid Argument');
end

%Call GetFolderPath method and return the result
result = System.Environment.GetFolderPath(enumArg);
end

Limitations to Support of .NET Enumerations
You cannot create arrays of .NET enumerations, or any .NET objects, in
MATLAB.

8-60

.NET Generic Classes in MATLAB®

.NET Generic Classes in MATLAB

In this section...

“.NET Generic Classes” on page 8-61

“Accessing Items in .NET Collections” on page 8-62

“Create .NET Collections” on page 8-62

“Convert .NET Collections to MATLAB Arrays” on page 8-64

“Create .NET Arrays of Generic Type” on page 8-65

“Call .NET Generic Methods” on page 8-66

“Display .NET Generic Methods Using Reflection” on page 8-68

.NET Generic Classes
Generics are classes and methods that have placeholders (type parameters or
parameterized types) for one or more types. This lets you design classes that
take in a generic type and determine the actual type at run time. A common
use for generic classes is to work with collections. For information about
generic methods, see “Call .NET Generic Methods” on page 8-66.

The NET.createGeneric function creates an instance of the specialized
generic class given the following:

• Fully qualified name of the generic class definition

• List of fully qualified parameter type names for generic type specialization

• Variable list of constructor arguments

Use instances of the NET.GenericClass helper class in NET.createGeneric
function’s parameter type list when specialization requires another
parameterized class definition. The class instances serve as parameterized
data type definitions and are constructed using fully qualified generic type
name and a variable length list of fully qualified type names for generic type
specialization. This list can also contain instances of NET.GenericClass if an
extra nested level of parameterization is required.

8-61

8 Using .NET Libraries from MATLAB®

Accessing Items in .NET Collections
Use the Item property of the System.Collections.Generic List class to get
or set an element at a specified index. Since Item is a property that takes
arguments, MATLAB maps it to a pair of methods to get and set the value.
For example, the syntax to use Item to get a value is:

Return Type Name Arguments

System.String
RetVal

Item (System.Collections.Generic.
List<System*String> this,
int32 scalar index)

The syntax to use Item to set a value is:

Return Type Name Arguments

none Item (System.Collections.Generic.
List<System*String> this,
int32 scalar index,
System.String value)

Create .NET Collections
This example uses two System.String arrays, d1 and d2, to create a generic
collection list. It shows how to manipulate the list and access its members.
To create the arrays, type:

d1 = NET.createArray('System.String',3);
d1(1) = 'Brachiosaurus';
d1(2) = 'Shunosaurus';
d1(3) = 'Allosaurus';

d2 = NET.createArray('System.String',4);
d2(1) ='Tyrannosaurus';
d2(2) ='Spinosaurus';
d2(3) ='Velociraptor';
d2(4) ='Triceratops';

8-62

.NET Generic Classes in MATLAB®

Create a generic collection, dc, to contain d1. The
System.Collections.Generic.List class is in the mscorlib assembly,
which MATLAB loads automatically.

dc = NET.createGeneric('System.Collections.Generic.List',...
{'System.String'},3)

System.Collections.Generic.List<System*String> handle
Package: System.Collections.Generic

Properties:
Capacity: 3

Count: 0

Methods, Events, Superclasses

The List object dc has a Capacity of three, but currently is empty (Count = 0).

Use the AddRange method to add the contents of d1 to the list. For more
information, search the Web for System.Collections.Generic and select
the List class.

AddRange(dc,d1);

List dc now has three items:

dc.Count

To display the contents, use the Item method and zero-based indexing:

for i=1:dc.Count
disp(dc.Item(i-1))

end

Brachiosaurus
Shunosaurus
Allosaurus

Another way to add values is to use the InsertRange method. Insert the
d2 array starting at index 1:

8-63

8 Using .NET Libraries from MATLAB®

InsertRange(dc,1,d2);

The size of the array has grown to seven. To display the values, type:

for i=1:dc.Count; disp(dc.Item(i-1)); end

Brachiosaurus
Tyrannosaurus
Spinosaurus
Velociraptor
Triceratops
Shunosaurus
Allosaurus

The first item in the d2 array (’Tyrannosaurus’) is at index 1 in list dc:

System.String.Compare(d2(1),dc.Item(1))

The System.String.Compare answer, 0, indicates the two values are equal.

Convert .NET Collections to MATLAB Arrays
Use the ToArray method of the System.Collections.Generic.List class
to convert a collection to an array. For example, use GetRange to get three
values from the list, starting with index 2. Then call ToArray to create a
System.String array dArr, and display the results:

temp = GetRange(dc,2,3);
dArr = ToArray(temp);
for i=1:dArr.Length; disp(dArr(i)); end

Spinosaurus
Velociraptor
Triceratops

To create a MATLAB array D:

D = {char(dArr(1)),char(dArr(2)),char(dArr(3))}

D =
'Spinosaurus' 'Velociraptor' 'Triceratops'

8-64

.NET Generic Classes in MATLAB®

Now you can use D in MATLAB functions. For example, if you type:

D'

ans =
'Spinosaurus'
'Velociraptor'
'Triceratops'

Sort the array alphabetically:

sort(D)

ans =
'Spinosaurus' 'Triceratops' 'Velociraptor'

Create .NET Arrays of Generic Type
This example creates a .NET array of List<Int32> generic type.

genType = NET.GenericClass('System.Collections.Generic.List',...
'System.Int32');

arr = NET.createArray(genType, 5)

arr =

System.Collections.Generic.List<System*Int32>[] handle
Package: System.Collections.Generic

Properties:
Length: 5

LongLength: 5
Rank: 1

SyncRoot: [1x1 System.Collections.Generic.List<System*Int32>[]]
IsReadOnly: 0

IsFixedSize: 1
IsSynchronized: 0

Methods, Events, Superclasses

8-65

8 Using .NET Libraries from MATLAB®

Call .NET Generic Methods
A generic method declares one or more parameterized types. For more
information, search for the term generics in the .NET Framework Class
Library, as described in “To Learn More About the .NET Framework” on
page 8-6.

Use the NET.invokeGenericMethod function to call a generic method. How
you use the NET.invokeGenericMethod depends if the method is static or if it
is a member of a generic class, as described in the following topics:

• “Invoke Static Generic Functions” on page 8-67

• “Invoke Generic Functions of a Generic Class” on page 8-68

• “Invoke Static Generic Functions of a Generic Class” on page 8-67

Using the NetDocGeneric Example
The C# example NetDocGeneric.cs, in the
matlabroot/extern/examples/NET/NetSample folder, defines simple generic
methods to illustrate the NET.invokeGenericMethod syntax. To see the
code, open the file in MATLAB Editor. Build the NetDocGeneric assembly
as described in “Building a .NET Application for MATLAB Examples” on
page 8-14.

If you created the assembly NetDocGeneric and put it in your c:\work folder,
type the following MATLAB commands to load the assembly:

dllPath = fullfile('c:','work','NetDocGeneric.dll');
NET.addAssembly(dllPath);

Note The methods and methodsview functions do not list generic methods.
Use the “Display .NET Generic Methods Using Reflection” on page 8-68
example.

Invoke Generic Class Member Function
The GenMethod method in NetDocGeneric.SampleClass returns the input
argument as type K. To call GenMethod, create an object, obj:

8-66

.NET Generic Classes in MATLAB®

obj = NetDocGeneric.SampleClass();

To convert 5 to an integer parameter type, such as System.Int32, call
NET.invokeGenericMethod with the object:

ret = NET.invokeGenericMethod(obj,...
'GenMethod',...
{'System.Int32'},...
5);

The GenMethodWithMixedArgs method has parameterized typed arguments,
arg1 and arg2, and a strongly typed argument, tf, of type bool. The tf
flag controls which argument GenMethodWithMixedArgs returns. To return
arg1, use the syntax:

ret = NET.invokeGenericMethod(obj,'GenMethodWithMixedArgs',...
{'System.Double'},5,6,true);

To return arg2, use the syntax:

ret = NET.invokeGenericMethod(obj,'GenMethodWithMixedArgs',...
{'System.Double'},5,6,false);

Invoke Static Generic Functions
To invoke static method GenStaticMethod, call NET.invokeGenericMethod
with the fully qualified class name:

ret = NET.invokeGenericMethod('NetDocGeneric.SampleClass',...
'GenStaticMethod',...
{'System.Int32'},...
5);

Invoke Static Generic Functions of a Generic Class
If a static function is a member of a generic class, create a class definition
using the NET.GenericClass constructor:

genClsDef = NET.GenericClass('NetDocGeneric.SampleGenericClass',...
'System.Double');

8-67

8 Using .NET Libraries from MATLAB®

To invoke static method GenStaticMethod of SampleGenericClass, call
NET.invokeGenericMethod with the class definition:

ret = NET.invokeGenericMethod(genClsDef,...
'GenStaticMethod',...
{'System.Int32'},...
5);

Invoke Generic Functions of a Generic Class
If a generic method uses the same parameterized type as the generic class,
you can call the function directly on the class object. If the generic uses a
different type than the class, use the NET.invokeGenericMethod function.

Display .NET Generic Methods Using Reflection

showGenericMethods Function
The showGenericMethods function, reads a .NET object or a fully qualified
class name and returns a cell array of the names of the generic method in the
given class or object. Create the following MATLAB functions:

function output = showGenericMethods(input)
%if input is a .NET object, get MethodInfo[]
if IsNetObject(input)

methods = GetType.GetMethods(input);
%if input is a string, get the type and get get MethodInfo[]

elseif ischar(input) && ~isempty(input)
type = getType(input);
if isempty(type)

disp(strcat(input,' not found'))
return

end
methods = GetMethods(type);

else
return;

end
%generate generic method names from MethodInfo[]
output = populateGenericMethods(methods);

8-68

.NET Generic Classes in MATLAB®

end

function output = populateGenericMethods(methods)
%generate generic method names from MethodInfo[]
index = 1;
for i = 1:methods.Length

method = methods(i);
if method.IsGenericMethod

output{index,1} = method.ToString.char;
index = index + 1;

end
end
end

function result = IsNetObject(input)
%must be sub class of System.Object to be a .NET object
result = isa(input,'System.Object');
end

function outputType = getType(input)
%input is a string representing the class name
%First try the static GetType method of Type handle.
%This method can find any type from
%System or mscorlib assemblies
outputType = System.Type.GetType(input,false,false);
if isempty(outputType)

%Framework's method to get the type failed.
%Manually look for it in
%each assembly visible to MATLAB
assemblies = System.AppDomain.CurrentDomain.GetAssemblies;
for i= 1:assemblies.Length

asm = assemblies.Get(i-1);
%look for a particular type in the assembly
outputType = GetType(asm,input,false,false);
if ~isempty(outputType)

%found the type - done
break

end
end

end

8-69

8 Using .NET Libraries from MATLAB®

end

Display Generic Methods in a Class
The NetDocGeneric assembly contains a class with generic methods.

dllPath = fullfile('c:','work','NetDocGeneric.dll');
asm = NET.addAssembly(dllPath);
asm.Classes

ans =
'NetDocGeneric.SampleClass'

Display the methods in SampleClass:

showGenericMethods('NetDocGeneric.SampleClass')

ans =
'K GenMethodK'
'K GenMethodWithMixedArgs[K](K, K, Boolean)'
'K GenStaticMethodK'
'K GenStaticMethodWithMixedArgs[K](K, K, Boolean)'

Display Generic Methods in a Generic Class
The NetDocGeneric assembly contains a generic class with generic methods.

dllPath = fullfile('c:','work','NetDocGeneric.dll');
asm = NET.addAssembly(dllPath);
asm.GenericTypes

ans =
'NetDocGeneric.SampleGenericClass`1[T]'

Display the methods in SampleGenericClass:

obj = NET.createGeneric('NetDocGeneric.SampleGenericClass',...
{'System.Double'});

showGenericMethods(obj)

ans =

8-70

.NET Generic Classes in MATLAB®

'System.String ParameterizedGenMethod[K](Double, K)'
'T GenMethodT'
'K GenStaticMethodK'
'K GenStaticMethodWithMixedArgs[K](K, K, Boolean)'
'System.String ParameterizedStaticGenMethod[K](Double, K)'

8-71

8 Using .NET Libraries from MATLAB®

Troubleshooting Security Policy Settings From Network
Drives

If you run a .NET command on a MATLAB session started from a
network drive, you could see a warning message. To resolve this
problem, run the enableNETfromNetworkDrive.m file, from the
matlabroot\toolbox\matlab\winfun\NET folder.

This file adds the following entry to the security policy on your machine to
trust the dotnetcli assembly, which is the MATLAB interface to .NET
module:

• Creates a group named MathWorks_Zone with LocalIntranet permission.

• Creates a dotnetcli subgroup within MathWorks_Zone.

• Provides Full-Trust to the dotnetcli.dll strong name for access to the
local intranet.

You must have administrative privileges to make changes to your
configuration.

8-72

Access a Simple .NET Class

Access a Simple .NET Class

In this section...

“System.DateTime Example” on page 8-73

“Create .NET Object From Constructor” on page 8-74

“View Information About .NET Object” on page 8-74

“Introduction to .NET Data Types” on page 8-77

System.DateTime Example
This example shows how to access functionality already loaded on your
system. The topics following the example introduce some key steps and ideas
to help you get started using .NET in MATLAB.

The Microsoft .NET Framework class library contains classes, such as
System.DateTime, you can use in MATLAB. The following code creates an
object and uses DateTime properties and methods to display information
about the current date and time.

%Create object for current date and time
dateObj = System.DateTime.Now;

%Display properties
dateObj.DayOfWeek
dateObj.Hour

%Call methods
ToShortTimeString(dateObj)
AddDays(dateObj,7);

%Call static method
System.DateTime.DaysInMonth(dateObj.Year,dateObj.Month)

The following topics provide more information about creating and viewing
information about objects and an introduction to .NET data types.

8-73

8 Using .NET Libraries from MATLAB®

For information about the .NET Framework class library, refer to the
3rd party documentation described in “To Learn More About the .NET
Framework” on page 8-6.

Create .NET Object From Constructor
The example in the previous section uses the Now property to create a
DateTime object. The following example shows how to create an object using
one of the DateTime constructors.

myDate = System.DateTime(2000,1,31);

To call this constructor, or any method, you need to know its argument
list, or function signature. Your vendor product documentation shows the
function signatures. You can also display the signatures using the MATLAB
methodsview function. Type methodsview('System.DateTime') and search
the list for DateTime entries, such as shown in the following table.

Return Type Name Arguments

System.DateTime obj DateTime (int32 scalar year,
etc.

From the .NET Class Framework documentation, the following signature
initializes a new instance of the DateTime structure to the specified year,
month, and day, which is the information required for the myDate variable.

Return Type Name Arguments

System.DateTime obj DateTime (int32 scalar year,
int32 scalar month,
int32 scalar day)

For more information, see “Reading Method Signatures” on page 8-20.

View Information About .NET Object
Although the vendor documentation contains information about DateTime
objects, you can use MATLAB commands, like properties and methods, to
display information about .NET objects. For example:

8-74

Access a Simple .NET Class

%Display an object
dateObj = System.DateTime.Now
%Display its properties
properties System.DateTime
%Display its methods
methods System.DateTime

MATLAB displays the following information. (The property values reflect
your specific date and time.)

Display of DateTime Object

dateObj =
System.DateTime
Package: System

Properties:
Date: [1x1 System.DateTime]
Day: 11

DayOfWeek: [1x1 System.DayOfWeek]
DayOfYear: 11

Hour: 12
Kind: [1x1 System.DateTimeKind]

Millisecond: 413
Minute: 31
Month: 1

Now: [1x1 System.DateTime]
UtcNow: [1x1 System.DateTime]
Second: 38
Ticks: 634303458984133595

TimeOfDay: [1x1 System.TimeSpan]
Today: [1x1 System.DateTime]
Year: 2011

MinValue: [1x1 System.DateTime]
MaxValue: [1x1 System.DateTime]

Methods, Superclasses

Display of DateTime Properties

Properties for class System.DateTime:

8-75

8 Using .NET Libraries from MATLAB®

Date
Day
DayOfWeek
DayOfYear
Hour
Kind
Millisecond
Minute
Month
Now
UtcNow
Second
Ticks
TimeOfDay
Today
Year
MinValue
MaxValue

Display of DateTime Methods

Methods for class System.DateTime:

Add GetType ToUniversalTime

AddDays GetTypeCode addlistener

AddHours IsDaylightSavingTime delete

AddMilliseconds Subtract eq

AddMinutes ToBinary findobj

AddMonths ToFileTime findprop

AddSeconds ToFileTimeUtc ge

AddTicks ToLocalTime gt

AddYears ToLongDateString isvalid

CompareTo ToLongTimeString le

DateTime ToOADate lt

Equals ToShortDateString ne

GetDateTimeFormats ToShortTimeString notify

GetHashCode ToString

Static methods:

8-76

Access a Simple .NET Class

Compare Parse op_GreaterThan

DaysInMonth ParseExact op_GreaterThanOrEqual

FromBinary SpecifyKind op_Inequality

FromFileTime TryParse op_LessThan

FromFileTimeUtc TryParseExact op_LessThanOrEqual

FromOADate op_Addition op_Subtraction

IsLeapYear op_Equality

For more information, see:

• “Using .NET Properties” on page 8-17

• “Using .NET Methods in MATLAB” on page 8-19

Introduction to .NET Data Types
To use .NET objects in MATLAB, you need to understand how MATLAB
treats .NET data types. For example, the following DateTime properties and
methods create variables of various .NET types:

dateObj = System.DateTime.Now;
thisDay = dateObj.DayOfWeek;
thisHour = dateObj.Hour;
thisDate = ToLongDateString(dateObj);
thisTime = ToShortTimeString(dateObj);
monthSize = System.DateTime.DaysInMonth(dateObj.Year,dateObj.Month);
whos

Name Size Bytes Class

dateObj 1x1 112 System.DateTime
monthSize 1x1 4 int32
thisDate 1x1 112 System.String
thisDay 1x1 104 System.DayOfWeek
thisHour 1x1 4 int32
thisTime 1x1 112 System.String

MATLAB displays the type as a class name.

To use these variables in MATLAB, consider the following:

8-77

8 Using .NET Libraries from MATLAB®

• Numeric values (int32) — MATLAB preserves .NET numeric types by
mapping them into equivalent MATLAB types. In the following example,
h is type int32.

h = thisHour + 1;

For more information, see “.NET Type to MATLAB Type Mapping” on
page 8-117 and “Numeric Types”.

• Strings (System.String) — Use the char function to convert a
System.String object to a MATLAB string:

disp(['The time is ' char(thisTime)]);

• Objects (System.DateTime) — Refer to the .NET Framework class library
documentation for information about using a DateTime object.

• Enumerations (System.DayOfWeek) — According to the DateTime
documentation, DayOfWeek is an enumeration. To display the enumeration
members, type:

enumeration('thisDay')

For more information, see “.NET Enumerations in MATLAB” on page 8-46.

For a complete list of supported types and mappings, see “Handling Data
Returned from .NET Objects” on page 8-117.

8-78

Load a Global .NET Assembly

Load a Global .NET Assembly
This example shows you how to make .NET classes visible to MATLAB by
loading a global assembly using the NET.addAssembly function.

The speech synthesizer class (available in .NET Framework Version 3.0 and
above) provides ready-to-use text-to-speech features. For example, type:

NET.addAssembly('System.Speech');
speak = System.Speech.Synthesis.SpeechSynthesizer;
speak.Volume = 100;
speak.Speak('You can use .NET Libraries in MATLAB');

The speech synthesizer class, like any .NET class, is part of an assembly.
To work with the class, call NET.addAssembly to load the assembly into
MATLAB. Your vendor documentation contains the assembly name.
For example, search the Microsoft .NET Framework Web site for the
System.SpeechSynthesizer class. The assembly name is System.Speech.

NET.addAssembly('System.Speech');

The System.Speech assembly is a global assembly. If your assembly is a
private assembly, use the full path for the input to NET.addAssembly.

The “System.DateTime Example” on page 8-73 does not call NET.addAssembly
because MATLAB dynamically loads its assembly (mscorlib) at startup.

Note You cannot unload an assembly in MATLAB.

For more information, see:

• “An Assembly is a Library of .NET Classes” on page 8-107

8-79

8 Using .NET Libraries from MATLAB®

Pass Numeric Arguments

In this section...

“Call .NET Methods with Numeric Arguments” on page 8-80

“Use .NET Numeric Types in MATLAB” on page 8-80

Call .NET Methods with Numeric Arguments
When you call a .NET method in MATLAB, MATLAB automatically converts
numeric arguments into equivalent .NET types, as shown in the table in “Pass
Primitive .NET Types” on page 8-109.

Use .NET Numeric Types in MATLAB
MATLAB automatically converts numeric data returned from a .NET method
into equivalent MATLAB types, as shown in the table in “.NET Type to
MATLAB Type Mapping” on page 8-117.

Note that MATLAB preserves .NET arrays as the relevant System.Array
types, for example, System.Double[].

MATLAB has rules for handling integers. If you are familiar with using
integer types in MATLAB, and just need a reference to the rules, see the
links at the end of this topic.

The default data type in MATLAB is double. If the data in your applications
uses the default, then you need to pay attention to the numeric outputs of
your .NET applications.

For more information, see:

• “Numeric Types”

• “Valid Combinations of Unlike Classes”

• “Combining Unlike Integer Types”

• Nondouble Data Type Support

8-80

Pass System.String Arguments

Pass System.String Arguments

In this section...

“Call .NET Methods with System.String Arguments” on page 8-81

“Use System.String in MATLAB” on page 8-82

Call .NET Methods with System.String Arguments
If an input argument to a .NET method is System.String, you can pass a
MATLAB string. MATLAB automatically converts a char array (string)
argument into System.String. For example, the following code uses the
System.DateTime.Parse method to convert a date represented by a string
into a DateTime object:

strDate = '01 Jul 2010 3:33:02 GMT';
convertedDate = System.DateTime.Parse(strDate);
ToShortTimeString(convertedDate)
ToLongDateString(convertedDate)

To view the function signature for the System.DateTime.Parse method, type:

methodsview('System.DateTime')

Search the list for Parse.

Qualifiers Return Type Name Arguments

Static System.DateTime
RetVal

Parse (System.String
s)

For more information, see:

• “Pass MATLAB Strings” on page 8-111

• Search the MSDN Web site at
http://msdn.microsoft.com/en-us/default.aspx for the term
System.DateTime.

8-81

http://msdn.microsoft.com/en-us/default.aspx

8 Using .NET Libraries from MATLAB®

Use System.String in MATLAB
This example shows how to use a System.String object in a MATLAB
function.

Create an object representing the current time.

dateObj = System.DateTime.Now;
thisTime = ToShortTimeString(dateObj);
class(thisTime)

ans =
System.String

The current time, thisTime, is a System.String object.

To display thisTime in MATLAB, use the char function to convert the
System.String object to a MATLAB string.

disp(['The time is ' char(thisTime)]);

For more information, see “How MATLAB Handles System.String” on page
8-118.

8-82

Pass System.Enum Arguments

Pass System.Enum Arguments

In this section...

“Call .NET Methods with System.Enum Arguments” on page 8-83

“Use System.Enum in MATLAB” on page 8-84

Call .NET Methods with System.Enum Arguments
An example of an enumeration is System.DayOfWeek. To see how to call a
.NET method with this input type, use the GetAbbreviatedDayName method
in the System.Globalization.DateTimeFormatInfo class. The following
code displays the abbreviation for “Thursday”.

% Create a DayOfWeek object
thisDay = System.DayOfWeek.Thursday;
formatObj = System.Globalization.DateTimeFormatInfo;
% Display the abbreviated name of the specified day based on the
% culture associated with the current DateTimeFormatInfo object.
formatObj.GetAbbreviatedDayName(thisDay)

To view the function signature for the GetAbbreviatedDayName method, type:

methodsview('System.Globalization.DateTimeFormatInfo')

Search the list for GetAbbreviatedDayName.

Return Type Name Arguments

System.String
RetVal

GetAbbreviatedDayName (
System.Globalization.DateTimeFo
this,
System.DayOfWeek
dayofweek)

For more information, see:

• “Overview of .NET Enumerations” on page 8-46

8-83

8 Using .NET Libraries from MATLAB®

• Search the MSDN Web site at
http://msdn.microsoft.com/en-us/default.aspx for the term
DateTimeFormatInfo.

Use System.Enum in MATLAB
In MATLAB, an enumeration is a class having a finite set of named instances.
You can work with .NET enumerations using features of the MATLAB
enumeration class and some features unique to the .NET Framework. Some
ways to use the System.DayOfWeek enumeration in MATLAB:

• Display an enumeration member. For example:

myDay = System.DateTime.Today;
disp(myDay.DayOfWeek);

• Use an enumeration in comparison statements. For example:

myDay = System.DateTime.Today;
switch(myDay.DayOfWeek)

case {System.DayOfWeek.Saturday,System.DayOfWeek.Sunday}
disp('Weekend')

otherwise
disp('Work day')

end

• Perform calculations using “Underlying Values” on page 8-48. For example,
the underlying type of DayOfWeek is System.Int32 which you can use to
perform integer arithmetic. To display the date of the first day of the
current week, type:

myDay = System.DateTime.Today;
dow = myDay.DayOfWeek;
startDateOfWeek = AddDays(myDay,-double(dow));
ToShortDateString(startDateOfWeek)

• Perform bit-wise operations. For examples, see “Creating .NET
Enumeration Bit Flags” on page 8-57.

For more information, see:

8-84

http://msdn.microsoft.com/en-us/default.aspx

Pass System.Enum Arguments

• “Iterate Through a .NET Enumeration” on page 8-52

• “Use .NET Enumerations to Test for Conditions” on page 8-54

• “Use Bit Flags with .NET Enumerations” on page 8-56

8-85

8 Using .NET Libraries from MATLAB®

Pass System.Nullable Arguments
This example shows how to handle .NET methods with System.Nullable type
arguments, whose underlying value type is double. The example shows how to
call a method with a System.Nullable input argument. It uses the MATLAB
plot function to show to handle a System.Nullable output argument.

Build Custom Assembly NetDocNullable

To execute the MATLAB code in this example, build the NetDocNullable
assembly. The assembly is created with the C# code, NetDocNullable.cs, in
the matlabroot/extern/examples/NET/NetSample folder. To see the code,
open the file in MATLAB Editor.

NetDocNullable defines method SetField which has System.Nullable
arguments.

SetField Function Signature

Return Type Name Arguments

System.Nullable
<System*Double>
RetVal

SetField (NetDocNullable.
MyClass this,
System.Nullable
<System*Double> db)

To build the NetDocNullable assembly, see “Building a .NET Application for
MATLAB Examples” on page 8-14.

Load NetDocNullable Assembly

The example assumes you put the assembly in your c:\work folder. You can
modify the example to change the path, dllPath, of the assembly.

dllPath = fullfile('c:','work','NetDocNullable.dll');
asm = NET.addAssembly(dllPath);
obj = NetDocNullable.MyClass;

Use the obj variable to call SetField, which creates a
System.Nullable<System*Double> value from your input.

8-86

Pass System.Nullable Arguments

Pass System.Nullable Input Arguments

MATLAB automatically converts double and null values to
System.Nullable<System*Double> objects.

Pass a double value.

field1 = SetField(obj,10)

field1 =
System.Nullable<System*Double>
Package: System

Properties:
HasValue: 1

Value: 10
Methods, Superclasses

The HasValue property is true (1) and the Value property is 10.

Pass null value, [].

field2 = SetField(obj,[])

field2 =
System.Nullable<System*Double>
Package: System

Properties:
HasValue: 0

Methods, Superclasses

The HasValue property is false (0), and it has no Value property.

Handle System.Nullable Output Arguments in MATLAB

Before you use a System.Nullable object in MATLAB, first decide how to
handle null values. If you ignore null values, you might get unexpected
results when you use the value in a MATLAB function.

8-87

8 Using .NET Libraries from MATLAB®

The System.Nullable class provides two techniques for handling null values.
To provide special handling for null values, use the HasValue property. To
treat a null value in the same way as a double, use the GetValueOrDefault
method.

Create a MATLAB function, plotValue.m, which detects null values
and treats them differently from numeric values. The input is a
System.Nullable<System*Double> type. If the input is null, the function
displays a message. If the input value is double, it creates a line graph from 0
to the value.

function plotValue(x)
% x is System.Nullable<System*Double> type
if (x.HasValue && isfloat(x.Value))

plot([0 x.Value]);
else

disp('No Data');
end;

The plotValue function uses the HasValue property of the input argument
to detect null values and calls the MATLAB plot function using the Value
property.

Call plotValue with variable field1 to display a line graph.

plotValue(field1)

Call plotValue with the variable field2, a null value.

plotValue(field2)

No Data

If you do not need special processing for null values, use the
GetValueOrDefault method. To display the GetValueOrDefault function
signature, type:

methodsview(field1)

Look for the following function signature:

8-88

Pass System.Nullable Arguments

GetValueOrDefault Function Signature

Return Type Name Arguments

double scalar
RetVal

GetValueOrDefault (System.Nullable
<System*Double>
this)

This method converts the input variable to double so you can directly call
the MATLAB plot function:

myData = GetValueOrDefault(field1);
plot([0 myData+2]);

The GetValueOrDefault method converts a null value to the default numeric
value, 0.

defaultData = GetValueOrDefault(field2)

defaultData =
0

Call plot:

plot([0 defaultData]);

You can change the default value using the GetValueOrDefault method.
Open the methodsview window and look for the following function signature:

GetValueOrDefault Function Signature to Change Default

Return Type Name Arguments

double scalar
RetVal

GetValueOrDefault (System.Nullable
<System*Double>
this,
double scalar
defaultValue)

Set the defaultValue input argument to a new value, -1, and plot the results
for null value field2.

8-89

8 Using .NET Libraries from MATLAB®

defaultData = GetValueOrDefault(field2,-1);
plot([0 defaultData]);

For more information, see:

• “Pass System.Nullable Type” on page 8-111

• “How MATLAB Handles System.Nullable” on page 8-120

• Search the MSDN Web site at
http://msdn.microsoft.com/en-us/default.aspx for the term
System.Nullable.

8-90

http://msdn.microsoft.com/en-us/default.aspx

Set Static .NET Properties

Set Static .NET Properties

In this section...

“System.Environment.CurrentDirectory Example” on page 8-91

“Do Not Use ClassName.PropertyName Syntax for Static Properties” on
page 8-92

System.Environment.CurrentDirectory Example
This example shows you how to set a static property using the
NET.setStaticProperty function.

The CurrentDirectory property in the System.Environment class is a static,
read/write property. The following code creates a new folder temp in the
current folder and changes the CurrentDirectory property to the new folder.

Set your current folder to a specific path, for example:

cd('C:\Work')

Set the CurrentDirectory property:

saveDir = System.Environment.CurrentDirectory;
newDir = [char(saveDir) '\temp'];
mkdir(newDir);
NET.setStaticProperty('System.Environment.CurrentDirectory',newDir)
System.Environment.CurrentDirectory

ans =
C:\Work\temp

To restore the original CurrentDirectory value, type:

NET.setStaticProperty('System.Environment.CurrentDirectory',saveDir)

8-91

8 Using .NET Libraries from MATLAB®

Do Not Use ClassName.PropertyName Syntax for
Static Properties
MATLAB creates a struct array when you use the ClassName.PropertyName
syntax to set a static property.

The following code creates a structure named System:

saveDir = System.Environment.CurrentDirectory;
newDir = [char(saveDir) '\temp'];
System.Environment.CurrentDirectory = newDir;
whos

Name Size Bytes Class

System 1x1 376 struct
newDir 1x12 24 char
saveDir 1x1 112 System.String

Try to use a member of the System namespace.:

oldDate = System.DateTime(1992,3,1);

Reference to non-existent field 'DateTime'.

To restore your environment, type:

clear System
NET.setStaticProperty('System.Environment.CurrentDirectory',saveDir)

8-92

Use .NET Properties That Take Arguments

Use .NET Properties That Take Arguments
MATLAB represents a property that takes an argument as a method. For
example, the System.String class has two properties, Chars and Length.
The Chars property gets the character at a specified character position in
the System.String object:

Type:

str = System.String('my new string');
Chars(str,0)

ans =
m

See “Call .NET Properties That Take an Argument” on page 8-22.

8-93

8 Using .NET Libraries from MATLAB®

MATLAB Does Not Display Protected Properties
The System.Windows.Media.ContainerVisual class, available in .NET
Framework Version 3.0 and above, has several protected properties. MATLAB
only displays public properties and fields. Type:

NET.addAssembly('PresentationCore');
properties('System.Windows.Media.ContainerVisual')

Display Public Properties

Properties for class System.Windows.Media.ContainerVisual:
Children
Parent
Clip
Opacity
OpacityMask
CacheMode
BitmapEffect
BitmapEffectInput
Effect
XSnappingGuidelines
YSnappingGuidelines
ContentBounds
Transform
Offset
DescendantBounds
DependencyObjectType
IsSealed
Dispatcher

To see how MATLAB handles property and field C# keywords, see “How
MATLAB Maps C# Property and Field Access Modifiers” on page 8-18.

8-94

Examples Using .NET Methods

Examples Using .NET Methods

In this section...

“Work with .NET Methods Having Multiple Signatures” on page 8-95

“SampleMethods Class” on page 8-97

“Call .NET Methods With out Keyword” on page 8-98

“Call .NET Methods With ref Keyword” on page 8-98

“Call .NET Methods With params Keyword” on page 8-99

Work with .NET Methods Having Multiple Signatures
To create the NetSample assembly, see “Building a .NET Application for
MATLAB Examples” on page 8-14.

The SampleMethodSignature class defines the three constructors shown in
the following table.

Return Type Name Arguments

netdoc.SampleMethodSignature
obj

SampleMethodSignature

netdoc.SampleMethodSignature
obj

SampleMethodSignature (double scalar d)

netdoc.SampleMethodSignature
obj

SampleMethodSignature (System.String s)

SampleMethodSignature Class

using System;
namespace netdoc
{

public class SampleMethodSignature
{

public SampleMethodSignature ()
{}

8-95

8 Using .NET Libraries from MATLAB®

public SampleMethodSignature (double d)
{ myDoubleField = d; }

public SampleMethodSignature (string s)
{ myStringField = s; }

public int myMethod(string strIn, ref double dbRef,
out double dbOut)

{
dbRef += dbRef;
dbOut = 65;
return 42;

}

private Double myDoubleField = 5.5;
private String myStringField = "hello";

}
}

Display Function Signature Example
If you have not already loaded the NetSample assembly, type:

NET.addAssembly('c:\work\NetSample.dll')

Create a SampleMethodSignature object obj:

obj = netdoc.SampleMethodSignature;

To see the method signatures, type:

methods(obj, '-full')

Look for the following signatures in the MATLAB output:

netdoc.SampleMethodSignature obj SampleMethodSignature

netdoc.SampleMethodSignature obj SampleMethodSignature(double scalar d)

netdoc.SampleMethodSignature obj SampleMethodSignature(System.String s)

For more information about argument types, see “Handling Data Returned
from .NET Objects” on page 8-117.

8-96

Examples Using .NET Methods

SampleMethods Class
To create the NetSample assembly, see “Building a .NET Application for
MATLAB Examples” on page 8-14.

The SampleMethods class defines the following methods:

• refTest

• outTest

• paramsTest

SampleMethods Class

using System;
namespace netdoc
{

public class SampleMethods
{

//test ref keyword
public void refTest(ref double db1)
{

db1 = db1 * 2;
}

//test out keyword
public void outTest(double db1, out double db2)
{

db1 = db1 * 2.35;
db2 = db1;

}

//test params keyword
public int paramsTest(params int[] num)
{

int total = 0;
foreach (int i in num)
{

total = total + i;
}
return total;

8-97

8 Using .NET Libraries from MATLAB®

}
}

}

Load the NetSample assembly:

NET.addAssembly('c:\work\NetSample.dll')

Call .NET Methods With out Keyword
To capture the output from a method using the out keyword, use the outTest
method in the “SampleMethods Class” on page 8-97. Its function signature is
shown in the following table.

Return Type Name Arguments

double scalar db2 outTest (
netdoc.SampleMethods
this,
double scalar db1)

Type:

obj = netdoc.SampleMethods;
db3 = outTest(obj,6)

db3 =
14.1000

Call .NET Methods With ref Keyword
To capture the output from a method using the ref keyword, use the refTest
method in the “SampleMethods Class” on page 8-97. Its function signature is
shown in the following table.

Return Type Name Arguments

double scalar db1 refTest (
netdoc.SampleMethods
this,
double scalar db1)

8-98

Examples Using .NET Methods

Type:

obj = netdoc.SampleMethods;
db4 = refTest(obj,6)

db4 =
12

Call .NET Methods With params Keyword
To call a method using a params keyword, use the paramsTest method in
the “SampleMethods Class” on page 8-97. The function signature is shown
in the following table.

Return Type Name Arguments

int32 scalar RetVal paramsTest (
netdoc.SampleMethods
this,
System.Int32[] num)

Type:

obj = netdoc.SampleMethods;
mat = [1, 2, 3, 4, 5, 6];
db5 = paramsTest(obj,mat)

db5 =
21

8-99

8 Using .NET Libraries from MATLAB®

Call .NET Methods with Optional Arguments

In this section...

“Setting Up the Examples” on page 8-100

“Skip Optional Arguments” on page 8-100

“Call Overloaded Methods” on page 8-101

Setting Up the Examples
To use the examples in this topic, build the NetDocOptional
assembly. This C# example, NetDocOptional.cs in the
matlabroot/extern/examples/NET/NetSample folder, defines the
methods used in these examples. To see the code, open the file in MATLAB
Editor. To build the NetDocOptional assembly, see “Building a .NET
Application for MATLAB Examples” on page 8-14. The examples assume
you put the assembly in your c:\work folder. You can modify the examples
to change the path to the assembly.

Skip Optional Arguments
This example shows how to use default values in optional arguments using
the Greeting method.

Greeting Function Signature

Arguments str1 and str2 are optional.

Return Type Name Arguments

System.String
RetVal

Greeting (NetDocOptional.MyClass
this,
int32 scalar x,
optional<System.String>
str1,
optional<System.String>
str2)

8-100

Call .NET Methods with Optional Arguments

Load the NetDocOptional assembly, if it is not already loaded. See “Setting
Up the Examples” on page 8-100.

dllPath = fullfile('c:','work','NetDocOptional.dll');
asm = NET.addAssembly(dllPath);
obj = NetDocOptional.MyClass;

Display the default values.

Greeting(obj,0)

ans =
hello world

Use the default value for str1.

def = System.Reflection.Missing.Value;
Greeting(obj,0,def,'Mr. Jones')

ans =
hello Mr. Jones

Use the default value for str2. You can omit the argument at the end of
a parameter list.

Greeting(obj,0,'My')

ans =
My world

Call Overloaded Methods
This example shows how to use optional arguments with an overloaded
method, calc.

8-101

8 Using .NET Libraries from MATLAB®

calc Function Signatures

The following table shows the signatures for calc, which adds the input
arguments. The difference is the type of optional argument, y.

Return Type Name Arguments

single scalar
RetVal

calc (NetDocOptional.MyClass
this,
optional<int32 scalar> x,
optional<single scalar> y)

double scalar
RetVal

calc (NetDocOptional.MyClass
this,
optional<int32 scalar> x,
optional<double scalar> y)

Load the NetDocOptional assembly, if it is not already loaded. See “Setting
Up the Examples” on page 8-100.

dllPath = fullfile('c:','work','NetDocOptional.dll');
asm = NET.addAssembly(dllPath);
obj = NetDocOptional.MyClass;

Call calc with explicit arguments.

calc(obj,3,4)

ans =
7

If you try to use the default values by omitting the parameters, MATLAB
cannot determine which signature to use.

calc(obj)

Cannot choose between the following .NET method signatures due to
unspecified optional arguments in the call to 'calc':

'NetDocOptional.MyClass.calc(NetDocOptional.MyClass this,
optional<int32 scalar> x, optional<single scalar> y)' and
'NetDocOptional.MyClass.calc(NetDocOptional.MyClass this,

8-102

Call .NET Methods with Optional Arguments

optional<int32 scalar> x, optional<double scalar> y)'

You can resolve this ambiguity by specifying enough additional
optional arguments so that there is only one possible matching
.NET method.

To use the default values, you must provide both arguments.

def = System.Reflection.Missing.Value;
calc(obj,def,def)
calc(obj,3,def)
calc(obj,def,4)

ans =
44

ans =
14

ans =
37

8-103

8 Using .NET Libraries from MATLAB®

Pass Cell Arrays of .NET Data

In this section...

“Example of Cell Arrays of .NET Data” on page 8-104

“Create a Cell Array for Each System.Object” on page 8-105

“Create MATLAB Variables from the .NET Data” on page 8-105

“Call MATLAB Functions with MATLAB Variables” on page 8-105

Example of Cell Arrays of .NET Data
In the “Converting Nested System.Object Arrays” on page 8-28 example,
the cell array mlData contains data from the MyGraph.getNewData method.
By reading the class documentation in the source file, you can create the
following MATLAB graph:

dllPath = fullfile('c:','work','NetDocCell.dll');
asm = NET.addAssembly(dllPath);
obj = NetDocCell.MyGraph;

% Create cell array containing all data
mlData = cell(obj.getNewData);

% Plot the data and label the graph
figure('Name',char(mlData{1}));
plot(double(mlData{2}(2)))
xlabel(char(mlData{2}(1)));

However, keeping track of data of different types and dimensions and the
conversions necessary to map .NET data into MATLAB types is complicated
using the cell array structure. Here are some tips for working with the
contents of nested System.Object arrays in MATLAB. After reading data
from a .NET method:

• Create cell arrays for all System.Object arrays.

• Convert the .NET types to MATLAB types, according to the information in
“Handling Data Returned from .NET Objects” on page 8-117.

• Create MATLAB variables for each type within the cell arrays.

8-104

Pass Cell Arrays of .NET Data

• Call MATLAB functions with the MATLAB variables.

Create a Cell Array for Each System.Object

The following statement creates the cell array mlData:

mlData = cell(obj.getNewData)

mlData =
[1x1 System.String] [1x1 System.Object[]]

This cell array contains elements of the these types.

To access the contents of the System.Object array, create another cell array
mlPlotData:

mlPlotData = cell(mlData{2})

mlPlotData =
[1x1 System.String] [1x1 System.Double[]]

This cell array contains elements of the these types.

Create MATLAB Variables from the .NET Data
Assign cell data to MATLAB variables and convert:

% Create descriptive variables
% Convert System.String to char
mytitle = char(mlData{1});
myxlabel = char(mlPlotData{1});
% Convert System.Double to double
y = double(mlPlotData{2});

Call MATLAB Functions with MATLAB Variables
Create a MATLAB graph with this data:

% Remove the previous figure
close
% Plot the data and label the graph
figure('Name',mytitle,'NumberTitle','off');

8-105

8 Using .NET Libraries from MATLAB®

plot(y)
xlabel(myxlabel);

8-106

An Assembly is a Library of .NET Classes

An Assembly is a Library of .NET Classes
Assemblies are the building blocks of .NET Framework applications; they
form the fundamental unit of deployment, version control, reuse, activation
scoping, and security permissions. An assembly is a collection of types and
resources built to work together and form a logical unit of functionality.

To work with a .NET application, you need to make its assemblies visible to
MATLAB. How you do this depends on how the assembly is deployed, either
privately or globally.

• A global assembly is shared among applications and installed in a common
directory, called the Global Assembly Cache (GAC).

• A private assembly is used by a single application.

To load a global assembly into MATLAB, use the short name of the assembly,
which is the file name without the extension. To load a private assembly, you
need the full path (folder and file name with extension) of the assembly. This
information is in the your product’s vendor documentation for the assembly.
Refer to the vendor documentation for everything you need to know to use
your product.

The following assemblies from the .NET Framework class library are
available at startup. MATLAB dynamically loads them the first time you type
“NET.” or “System.”.

• mscorlib.dll

• system.dll

To use any other .NET assembly, load the assembly using the
NET.addAssembly command. After loading the assembly, you can work with
the classes defined by the assembly.

8-107

8 Using .NET Libraries from MATLAB®

Convert Nested System.Object Arrays
The conversion is not recursive for a System.Object array contained within
a System.Object array. You must use the cell function to convert each
System.Object array.

The C# example NetDocCell.cs, in the
matlabroot/extern/examples/NET/NetSample folder, is used in the
following example. To see the code, open the file in MATLAB Editor. Build
the NetDocCell assembly as described in “Building a .NET Application for
MATLAB Examples” on page 8-14.

Set up the path name to your assembly, then load the assembly.

dllPath = fullfile('c:','work','NetDocCell.dll');
NET.addAssembly(dllPath);

Create a cell array, mlData:

obj = NetDocCell.MyGraph;
mlData = cell(obj.getNewData)

mlData =
[1x1 System.String] [1x1 System.Object[]]

To access the contents of the System.Object array, create another cell array
mlPlotData:

mlPlotData = cell(mlData{2})

mlPlotData =
[1x1 System.String] [1x1 System.Double[]]

For another example, see “Pass Cell Arrays of .NET Data” on page 8-104.

For information about building an assembly, see “Building a .NET Application
for MATLAB Examples” on page 8-14.

8-108

Passing Data to .NET Objects

Passing Data to .NET Objects
When you make a call in MATLAB to a .NET method or function, MATLAB
automatically converts arguments into .NET types. MATLAB performs this
conversion on each passed argument, except for arguments that are already
.NET objects.

The following topics provide information about passing specific data to .NET:

In this section...

“Pass Primitive .NET Types” on page 8-109

“Pass Cell Arrays” on page 8-110

“Pass Nonprimitive .NET Objects” on page 8-111

“Pass MATLAB Strings” on page 8-111

“Pass System.Nullable Type” on page 8-111

“Pass NULL Values” on page 8-112

“Unsupported MATLAB Types” on page 8-112

“Choosing Method Signatures” on page 8-112

“Example — Choosing a Method Signature” on page 8-113

“Pass Arrays” on page 8-115

“Pass MATLAB Arrays as Jagged Arrays” on page 8-115

Pass Primitive .NET Types
The following table shows the MATLAB base types for passed arguments and
the corresponding .NET types defined for input arguments. Each row shows a
MATLAB type followed by the possible .NET argument matches, from left to
right in order of closeness of the match.

8-109

8 Using .NET Libraries from MATLAB®

MATLAB Primitive Type Conversion Table

MATLAB

Type
Closest Type <————— Other Matching .NET Types —————> Least Close Type

Preface Each .NET Type with System.

logical Boolean Byte SByte Int16 UInt16 Int32 UInt32 Int64 UInt64 Single Double Object

double Double Single Decimal Int64 UInt64 Int32 UInt32 Int16 UInt16 SByte Byte Object

single Single Double Decimal Object

int8 SByte Int16 Int32 Int64 Single Double Object

uint8 Byte UInt16 UInt32 UInt64 Single Double Object

int16 Int16 Int32 Int64 Single Double Object

uint16 UInt16 UInt32 UInt64 Single Double Object

int32 Int32 Int64 Single Double Object

uint32 UInt32 UInt64 Single Double Object

int64 Int64 Double Object

uint64 UInt64 Double Object

char Char String Object

The following primitive .NET argument types do not have direct MATLAB
equivalent types. MATLAB passes these types as is:

• System.IntPtr

• System.UIntPtr

• System.Decimal

• enumerated types

Pass Cell Arrays
You can pass a cell array to a .NET property or method expecting an array of
System.Object or System.String arguments, as shown in the following table.

8-110

Passing Data to .NET Objects

MATLAB Cell Array Conversion Table

MATLAB Type Closest Type <——— Other Matching .NET Types ———>
Least Close Type

Cell array of
strings

System.String[] System.Object[] System.Object

Cell array (not all
strings)

System.Object[] System.Object

Elements of a cell can be any of the following supported types:

• Any non-sparse, non-complex built-in numeric type shown in the MATLAB®

Primitive Type Conversion Table on page 8-110

• char

• logical

• cell array

• .NET object

Pass Nonprimitive .NET Objects
When calling a method that has an argument of a particular .NET class, you
must pass an object that is an instance of that class or its derived classes.
You can create such an object using the class constructor, or use an object
returned by a member of the class. When a class member returns a .NET
object, MATLAB leaves it as a .NET object so you can continue to use it to
interact with other class members.

Pass MATLAB Strings
MATLAB automatically converts a string or char array to a .NET
System.String object. To pass an array of strings, create a cell array.

Pass System.Nullable Type
You can pass any of the following to a .NET method with
System.Nullable<ValueType> input arguments:

8-111

8 Using .NET Libraries from MATLAB®

• Variable of the underlying <ValueType>

• null value, []

• System.Nullable<ValueType> object

When you pass a MATLAB variable of type ValueType, MATLAB
reads the signature and automatically converts your variable to a
System.Nullable<ValueType> object. For a complete list of possible
ValueType values accepted for System.Nullable<ValueType>, refer to the
MATLAB® Primitive Type Conversion Table on page 8-110.

For examples, see “Pass System.Nullable Arguments” on page 8-86.

Pass NULL Values
MATLAB uses empty double ([]) values for reference type arguments.

Unsupported MATLAB Types
You cannot pass the following MATLAB types to .NET methods:

• Structure arrays

• Sparse arrays

• Complex numbers

Choosing Method Signatures
MATLAB chooses the correct .NET method signature (including constructor,
static and nonstatic methods) based on the following criteria.

When your MATLAB function calls a .NET method, MATLAB:

1 Checks to make sure that the object (or class, for a static method) has a
method by that name.

2 Determines whether the invocation passes the same number of arguments
of at least one method with that name.

3 Makes sure that each passed argument can be converted to the type defined
for the method.

8-112

Passing Data to .NET Objects

If all the preceding conditions are satisfied, MATLAB calls the method.

In a call to an overloaded method, if there is more than one candidate,
MATLAB selects the one with arguments that best fit the calling arguments,
based on the MATLAB® Primitive Type Conversion Table on page 8-110.
First, MATLAB rejects all methods that have any argument types that are
incompatible with the passed arguments. Among the remaining methods,
MATLAB selects the one with the highest fitness value, which is the sum of
the fitness values of all its arguments. The fitness value for each argument
is how close the MATLAB type is to the .NET type. If two methods have the
same fitness, MATLAB chooses the first one defined in the class.

For class types, MATLAB chooses the method signature based on the distance
of the incoming class type to the expected .NET class type. The closer the
incoming type is to the expected type, the better the match.

The rules for overloaded methods with optional arguments are described in
“Determining Which Overloaded Method Is Invoked” on page 8-21.

Example — Choosing a Method Signature
Open a methodsview window for the System.String class and look at the
entries for the Concat method:

import System.*
methodsview('System.String')

The Concat method takes one or more arguments. If the arguments are of
type System.String, the method concatenates the values. For example,
create two strings:

str1 = String('hello');
str2 = String('world');

When you type:

String.Concat(str1,str2)

MATLAB verifies the method Concat exists and looks for a signature with
two input arguments. The following table shows the two signatures.

8-113

8 Using .NET Libraries from MATLAB®

Qualifiers Return Type Name Arguments

Static System.String
RetVal

Concat (System.Object arg0,
System.Object arg1)

Static System.String
RetVal

Concat (System.String str0,
System.String str1)

Since str1 and str2 are of class System.String, MATLAB chooses the
second signature and displays:

ans =
helloworld

If the arguments are of type System.Object, the method displays the string
representations of the values. For example, create two System.DateTime
objects:

objDate = DateTime.Today;
myDate = System.DateTime(objDate.Year,3,1,11,32,5);

When you type:

String.Concat(objDate,myDate)

MATLAB chooses the following signature, since System.DateTime objects are
derived from the System.Object class.

Qualifiers Return Type Name Arguments

Static System.String
RetVal

Concat (System.Object
arg0,
System.Object
arg1)

This Concat method first applies the ToString method to the objects, then
concatenates the strings. MATLAB displays information like:

ans =
12/23/2008 12:00:00 AM3/1/2008 11:32:05 AM

8-114

Passing Data to .NET Objects

Pass Arrays
For information about passing MATLAB arrays to .NET methods, see “Using
Arrays with .NET Applications” on page 8-27 and “Pass MATLAB Arrays as
Jagged Arrays” on page 8-115.

How Array Dimensions Affect Conversion
The dimension of a .NET array is the number of subscripts required to access
an element of the array. To get the number of dimensions, use the Rank
property of the .NET System.Array type. The dimensionality of a MATLAB
array is the number of non-singleton dimensions in the array.

MATLAB matches the array dimensionality with the .NET method signature,
as long as the dimensionality of the MATLAB array is lower than or equal
to the expected dimensionality. For example, you can pass a scalar input to
a method that expects a 2-D array.

For a MATLAB array with number of dimensions, N, if the .NET array
has fewer than N dimensions, the MATLAB conversion drops singleton
dimensions, starting with the first one, until the number of remaining
dimensions matches the number of dimensions in the .NET array.

Converting a MATLAB Array to System.Object
You can pass a MATLAB array to a method that expects a System.Object.

Pass MATLAB Arrays as Jagged Arrays
A MATLAB array is a rectangular array. The .NET Framework supports a
jagged array, which is an array of arrays. This means the elements of a jagged
array can be of different dimensions and sizes.

Although .NET languages support jagged arrays, the term jagged is not
a language keyword. C# function signatures use multiple pairs of square
brackets ([][]) to represent a jagged array. In addition, a jagged array can
be nested ([][][]), multidimensional ([,]), or nested with multidimensional
elements (for example, [,,][,][]).

MATLAB automatically converts MATLAB arrays of numeric types to the
corresponding jagged array type. If the input argument is a non-numeric type

8-115

8 Using .NET Libraries from MATLAB®

or multidimensional, use the NET.createArray function to create an array
to pass as a jagged array. For examples using NET.createArray, see “Pass
Jagged Arrays” on page 8-31.

8-116

Handling Data Returned from .NET Objects

Handling Data Returned from .NET Objects

In this section...

“.NET Type to MATLAB Type Mapping” on page 8-117

“How MATLAB Handles System.String” on page 8-118

“How MATLAB Handles System.__ComObject” on page 8-119

“How MATLAB Handles System.Nullable” on page 8-120

“How MATLAB Handles dynamic Type” on page 8-121

“How MATLAB Handles Jagged Arrays” on page 8-121

.NET Type to MATLAB Type Mapping
The following table shows how MATLAB converts data from a .NET object
into MATLAB types. These are the values displayed in a method signature.

C# .NET Type MATLAB Type

System.Int16 int16 scalar

System.UInt16 uint16 scalar

System.Int32 int32 scalar

System.UInt32 uint32 scalar

System.Int64 int64 scalar

System.UInt64 uint64 scalar

System.Single single scalar

System.Double double scalar

System.Boolean logical scalar

System.Byte uint8 scalar

System.Enum enum

System.Char char

System.Decimal System.Decimal

System.Object System.Object

8-117

8 Using .NET Libraries from MATLAB®

C# .NET Type MATLAB Type

System.IntPtr System.IntPtr

System.UIntPtr System.UIntPtr

System.String System.String

System.Nullable<ValueType> System.Nullable<ValueType>

System.Array See “Using Arrays with .NET
Applications” on page 8-27

System.__ComObject See “How MATLAB Handles
System.__ComObject” on page 8-119

class name class name

struct name struct name

How MATLAB Handles System.String
Use the char function to convert a System.String object to a MATLAB
string. For example, type:

str = System.String('create a System.String');
strml = char(str);
whos

Name Size Bytes Class

str 1x1 60 System.String
strml 1x22 44 char

MATLAB displays the string value of System.String objects, instead of the
standard object display. For example, type:

a = System.String('test')
b = String.Concat(a,' hello',' world')

a =
test
b =
test hello world

8-118

Handling Data Returned from .NET Objects

The System.String class illustrates how MATLAB handles fields and
properties, as described in “Call .NET Properties That Take an Argument” on
page 8-22. To see reference information about the class, search for the term
System.String in the .NET Framework Class Library, as described in “To
Learn More About the .NET Framework” on page 8-6.

How MATLAB Handles System.__ComObject
The System.__ComObject type represents a Microsoft COM object. It
is a non-visible, public class in the mscorlib assembly with no public
methods. Under certain circumstances, a .NET object returns an instance of
System.__ComObject. MATLAB handles the System.__ComObject based on
the return types defined in the metadata.

MATLAB Converts Object
If the return type of a method or property is strongly typed, and the result of
the invocation is System.__ComObject, MATLAB automatically converts the
returned object to the appropriate type.

For example, suppose your assembly defines a type, TestType, and provides a
method, GetTestType, with the following signature.

Return Type Name Arguments

NetDocTest.TestType
RetVal

GetTestType (NetDocTest.MyClass this)

The return type of GetTestType is strongly typed and the .NET Framework
returns an object of type System.__ComObject. MATLAB automatically
converts the object to the appropriate type, NetDocTest.TestType, shown in
the following pseudo-code:

obj = NetDocTest.MyClass;
var = GetTestType(obj)

var =

NetDocTest.TestType handle with no properties.
Package: NetDocTest

8-119

8 Using .NET Libraries from MATLAB®

Methods, Events, Superclasses

Casting Object to Appropriate Type
If the return type of a method or property is System.Object, and the
result of the invocation is System.__ComObject, MATLAB returns
System.__ComObject. To use the returned object, you must cast it to a valid
class or interface type. Use your product documentation to identify the valid
types for this object.

To call a member of the new type, cast the object using the MATLAB
conversion syntax:

objConverted = namespace.classname(obj)

where obj is a System.__ComObject type.

For example, an item in a Microsoft Excel® sheet collection can be a chart or
a worksheet. The following command converts the System.__ComObject
variable mySheet to a Chart or a Worksheet object newSheet:

newSheet = Microsoft.Office.Interop.Excel.interfacename(mySheet);

where interfacename is Chart or Worksheet. For an example, see “Work
with Microsoft® Excel® Spreadsheets Using .NET” on page 8-123.

Pass a COM Object Between Processes
If you pass a COM object to or from a function, you must lock the object so
that MATLAB does not automatically release it when the object goes out of
scope. To lock the object, call the NET.disableAutoRelease function. You
must then unlock the object, using the NET.enableAutoRelease function,
after you are through using it.

How MATLAB Handles System.Nullable
If .NET returns a System.Nullable type, MATLAB returns the corresponding
System.Nullable type.

8-120

Handling Data Returned from .NET Objects

A System.Nullable type lets you assign null values to types, such as
numeric types, that do not support null value. To use a System.Nullable
object in MATLAB, you first need to decide how to handle null values.

• If you want to process null values differently from <ValueType> values,
use the HasValue property.

• If you want every value to be of the underlying <ValueType>, use the
GetValueOrDefault method. This method assigns a default value of type
<ValueType> to null values.

Use a variable of the object’s underlying type where appropriate in any
MATLAB expression. For examples, see “Pass System.Nullable Arguments”
on page 8-86.

How MATLAB Handles dynamic Type
MATLAB handles dynamic types as System.Object. For example, the
following C# method exampleMethod has a dynamic input argument d and
returns a dynamic output value:

public dynamic exampleMethod(dynamic d)

The following table shows the corresponding MATLAB function signature.

Return Type Name Arguments

System.Object
RetVal

exampleMethod (namespace.classname this,
System.Object d)

How MATLAB Handles Jagged Arrays
You must convert a .NET jagged array before using it in a MATLAB
command. To convert:

• If the shape of the array is rectangular, use the corresponding MATLAB
numeric function.

• If the array is not rectangular, use the cell function.

8-121

8 Using .NET Libraries from MATLAB®

If the jagged array is multidimensional, you must individually convert the
arrays in each dimension.

8-122

Work with Microsoft® Excel® Spreadsheets Using .NET

Work with Microsoft Excel Spreadsheets Using .NET
This example creates a spreadsheet, copies some data to it, and closes it.
To create a workbook, type:

NET.addAssembly('microsoft.office.interop.excel');
app = Microsoft.Office.Interop.Excel.ApplicationClass;
books = app.Workbooks;
newWB = Add(books);
app.Visible = true;

Create a new sheet:

sheets = newWB.Worksheets;
newSheet = Item(sheets,1);

newSheet is a System.__ComObject because sheets.Item can return different
types, such as a Chart or a Worksheet. To make the sheet a Worksheet, use
the command:

newWS = Microsoft.Office.Interop.Excel.Worksheet(newSheet);

Create some data and write to a range of cells:

excelArray = rand(10);
newRange = Range(newWS,'A1');
newRange.Value2 = 'Data from Location A';
newRange = Range(newWS,'A3:B12');
newRange.Value2 = excelArray;

Modify cell format and name the worksheet:

newFont = newRange.Font;
newFont.Bold = 1;
newWS.Name = 'Test Data';

If this is a new spreadsheet, use the SaveAs method:

SaveAs(newWB,'mySpreadsheet.xlsx');

Close and quit:

8-123

8 Using .NET Libraries from MATLAB®

Close(newWB);
Quit(app);

8-124

Work with Microsoft® Word Documents Using .NET

Work with Microsoft Word Documents Using .NET
The following code creates a new Word document:

NET.addAssembly('microsoft.office.interop.word');
wordApp = Microsoft.Office.Interop.Word.ApplicationClass;
wordDoc = wordApp.Documents;
newDoc = Add(wordDoc);

If you want to type directly into the document, type the MATLAB command:

wordApp.Visible = true;

Put the cursor into the document window and enter text.

To name the document myDocument.docx and save it in the My Documents
folder, type:

SaveAs(newDoc,'myDocument.docx');

When you are finished, to close the document and application, type:

Save(newDoc);
Close(newDoc);
Quit(wordApp);

8-125

8 Using .NET Libraries from MATLAB®

8-126

9

Using COM Objects from
MATLAB

• “MATLAB COM Integration” on page 9-2

• “Getting Started with COM” on page 9-8

• “Use Internet Explorer Program in a MATLAB Figure” on page 9-11

• “Add Grid ActiveX Control in a Figure” on page 9-17

• “Read Excel Spreadsheet Data” on page 9-25

• “Supported Client/Server Configurations” on page 9-33

9 Using COM Objects from MATLAB®

MATLAB COM Integration

In this section...

“What Is COM?” on page 9-2

“Concepts and Terminology” on page 9-3

“The MATLAB COM Client” on page 9-5

“The MATLAB COM Automation Server” on page 9-6

“Registering Controls and Servers” on page 9-6

What Is COM?

Note MATLAB supports the Microsoft .NET Framework on the Windows
platform. For more information about this alternative, see “Overview Using
.NET from MATLAB” on page 8-3.

The Microsoft Component Object Model (COM) provides a framework for
integrating reusable, binary software components into an application.
Because components are implemented with compiled code, the source code
can be written in any of the many programming languages that support
COM. Upgrades to applications are simplified, as components can simply be
swapped without the need to recompile the entire application. In addition,
a component’s location is transparent to the application, so components can
be relocated to a separate process or even a remote system without having to
modify the application.

Using COM, developers and end users can select application-specific
components produced by different vendors and integrate them into a complete
application solution. For example, a single application might require database
access, mathematical analysis, and presentation-quality business graphs.
Using COM, a developer can choose a database-access component by one
vendor, a business graph component by another, and integrate these into a
mathematical analysis package produced by yet a third.

MATLAB software supports COM integration on the Microsoft Windows
platform only.

9-2

MATLAB® COM Integration

Concepts and Terminology
While the ideas behind COM technology are straightforward, the terminology
is not. The meaning of COM terms has changed over time and few concise
definitions exist. Here are some terms that you should be familiar with.
These are not comprehensive definitions. For a complete description of COM,
you’ll need to consult outside resources.

• “COM Objects, Clients, and Servers” on page 9-3

• “Interfaces” on page 9-3

• “COM Server Types” on page 9-4

• “Programmatic Identifiers” on page 9-4

• “In-Process and Out-of-Process Servers” on page 9-5

COM Objects, Clients, and Servers
A COM object is a software component that conforms to the Component Object
Model. COM enforces encapsulation of the object, preventing direct access of
its data and implementation. COM objects expose “Interfaces” on page 9-3,
which consist of properties, methods and events.

A COM client is a program that makes use of COM objects. COM objects
that expose functionality for use are called COM servers. COM servers can
be in-process or out-of-process. An example of an out-of-process server is
Microsoft Excel spreadsheet program. These configurations are described in
“In-Process and Out-of-Process Servers” on page 9-5.

A Microsoft ActiveX® control is a type of in-process COM server that requires
a control container. ActiveX controls typically have a user interface. An
example is the Microsoft Calendar control. A control container is an
application capable of hosting ActiveX controls. A MATLAB figure window or
a Simulink® model are examples of control containers.

MATLAB can be used as either a COM client or COM server.

Interfaces
The functionality of a component is defined by one or more interfaces. To use
a COM component, you must learn about its interfaces, and the methods,

9-3

9 Using COM Objects from MATLAB®

properties, and events implemented by the component. The component
vendor provides this information.

There are two standard COM interfaces:

• IUnknown— An interface required by all COM components. All other COM
interfaces are derived from IUnknown.

• IDispatch— An interface that exposes objects, methods and properties to
applications that support Automation.

COM Server Types
There are three types of COM servers:

• Automation — A server that supports the OLE Automation standard.
Automation servers are based on the IDispatch interface. Automation
servers can be accessed by clients of all types, including scripting clients.

• Custom — A server that implements an interface directly derived from
IUnknown. Custom servers are preferred when faster client access is critical.

• Dual — A server that implements a combination of Automation and
Custom interfaces.

Programmatic Identifiers
To create an instance of a COM object, you use its programmatic identifier,
or ProgID. The ProgID is a unique string defined by the component
vendor to identify the COM object. You obtain a ProgID from the vendor’s
documentation.

The MATLAB ProgIDs are

• Matlab.Application — Starts a command window Automation server
with the version of MATLAB that was most recently used as an Automation
server (might not be the latest installed version of MATLAB).

• Matlab.Autoserver— Starts a command window Automation server using
the most recent version of MATLAB.

• Matlab.Desktop.Application— Starts the full desktop MATLAB as an
Automation server using the most recent version of MATLAB.

9-4

MATLAB® COM Integration

In-Process and Out-of-Process Servers
You can configure a server three ways. MATLAB supports all of these
configurations.

• “In-Process Server” on page 9-5

• “Local Out-of-Process Server” on page 9-5

• “Remote Out-of Process Server” on page 9-5

In-Process Server. An in-process server is a component implemented as a
dynamic link library (DLL) or ActiveX control that runs in the same process
as the client application, sharing the same address space. Communication
between client and server is relatively fast and simple.

Local Out-of-Process Server. A local out-of-process server is a component
implemented as an executable (EXE) file that runs in a separate process
from the client application. The client and server processes are on the same
computer system. This configuration is somewhat slower due to the overhead
required when transferring data across process boundaries.

Remote Out-of Process Server. This is a type of out-of-process server;
however, the client and server processes are on different systems and
communicate over a network. Network communications, in addition to the
overhead required for data transfer, can make this configuration slower than
the local out-of-process configuration. This configuration runs only on systems
that support the Distributed Component Object Model (DCOM).

The MATLAB COM Client
Using MATLAB as a COM client provides two techniques for developing
programs in MATLAB:

• You can include COM components in your MATLAB application (for
example, a spreadsheet).

• You can access existing applications that expose objects via Automation.

In a typical scenario, MATLAB creates ActiveX controls in figure windows,
which are manipulated by MATLAB through the controls’ properties,
methods, and events. This is useful because there exists a wide variety of

9-5

9 Using COM Objects from MATLAB®

graphical user interface components implemented as ActiveX controls. For
example, the Microsoft Internet Explorer® program exposes objects that you
can include in a figure to display an HTML file. There also are treeviews,
spreadsheets, and calendars available from a variety of sources.

MATLAB COM clients can access applications that support Automation,
such as the Excel spreadsheet program. In this case, MATLAB creates an
Automation server in which to run the application and returns a handle to the
primary interface for the object created.

Information about creating and using COM controls and server objects in
MATLAB can be found in “Creating COM Objects” on page 10-2.

The MATLAB COM Automation Server
Automation provides an infrastructure whereby applications called
automation controllers can access and manipulate (i.e. set properties of
or call methods on) shared automation objects that are exported by other
applications, called Automation servers. Any Windows program that can be
configured as an Automation controller can control MATLAB.

For example, using Microsoft Visual Basic® programming language, you can
run a MATLAB script in a Microsoft PowerPoint® presentation. In this case,
PowerPoint is the controller and MATLAB is the server.

Information for creating and connecting to a MATLAB Automation server
running MATLAB can be found in “MATLAB COM Automation Server
Interface” on page 11-2.

Registering Controls and Servers
Before using COM objects, you must register their controls and servers. Most
are registered by default. However, if you get a new .ocx, .dll, or other
object file for the control or server, you must register the file manually in
the Windows registry.

Use the DOS regsvr32 command to register your file. From the DOS prompt,
use the cd function to go to the folder containing the object file. If your object
file is an .ocx file, type:

9-6

MATLAB® COM Integration

regsvr32 filename.ocx

For example, to register the MATLAB control mwsamp2.ocx, type:

cd matlabroot\toolbox\matlab\winfun\win32
regsvr32 mwsamp2.ocx

If you encounter problems with this procedure, please consult a Windows
manual or contact your local system administrator.

Accessing COM Controls Created with .NET
If you create a COM control using Microsoft .NET Framework 4, use the DOS
regasm command with the /codebase option to register your file.

Verifying the Registration
Here are several ways to verify that a control or server is registered. These
examples use the MATLAB mwsamp control. Refer to your Microsoft product
documentation for information about using Microsoft Visual Studio or the
Microsoft Registry Editor programs.

• Go to the Visual Studio .NET 2003 Tools menu and execute the ActiveX
control test container. Click Edit, insert a new control, and select MwSamp
Control. If you are able to insert the control without any problems, the
control is successfully registered. Note that this method only works on
controls.

• Open the Registry Editor by typing regedit at the DOS prompt. Search for
your control or server object by selecting Find from the Edit menu. It will
likely be in the following structure:

HKEY_CLASSES_ROOT/progid

• Open OLEViewer from the Visual Studio .NET 2003 Tools menu. Look in
the following structure for your Control object:

Object Classes : Grouped by Component Category : Control :
Your_Control_Object_Name (i.e. Object Classes : Grouped by
Component Category : Control : Mwsamp Control)

9-7

9 Using COM Objects from MATLAB®

Getting Started with COM

In this section...

“Introduction to COM” on page 9-8

“Basic COM Functions” on page 9-8

Introduction to COM
A COM client is a program that manipulates COM objects. These objects can
run in the MATLAB application or can be part of another application that
exposes its objects as a programmatic interface to the application.

This section provides examples that show how to use MATLAB as a COM
client.

Note You can also access MATLAB as an Automation server from other
applications, such as those written in the Microsoft Visual Basic programming
language. For information on this technique, see “MATLAB COM Automation
Server Interface” on page 11-2.

Basic COM Functions
To start using COM objects, you need to create the object and get information
about it. This section covers the following topics:

• “Creating an Instance of a COM Object” on page 9-8

• “Getting Information About a Particular COM Control” on page 9-9

• “Getting an Object’s ProgID” on page 9-9

• “Registering a Custom Control” on page 9-10

Creating an Instance of a COM Object
Two MATLAB functions enable you to create COM objects:

• actxcontrol— Creates an instance of a control in a MATLAB figure.

9-8

Getting Started with COM

• actxserver — Creates and manipulates objects from MATLAB that are
exposed in an application that supports Automation.

Each function returns a handle to the object’s main interface, which you
use to access the object’s methods, properties, and events, and any other
interfaces it provides.

Getting Information About a Particular COM Control
In general, you can determine what you can do with an object using the
methods, get, and events functions.

Information about Methods. To list the methods supported by the object
handle, type:

handle.methods

Information about Properties. To list the properties of the object handle,
type:

get(handle)

To see the value of the property PropertyName, type:

get(handle,'PropertyName')

Use set to change a property value.

Information about Events. To list the events supported by the object
handle, type:

handle.events

For more information on calling syntax, see “Getting Interfaces to COM
Object” on page 10-60 and “Invoking Methods on an Object” on page 10-34.
For more information on events, see “Use Events” on page 10-42.

Getting an Object’s ProgID
To get the programmatic identifier (ProgID) of a COM control that is already
registered on your computer, use the actxcontrollist command. You
can also use the ActiveX Control Selector, displayed with the command

9-9

9 Using COM Objects from MATLAB®

actxcontrolselect. This interface lets you see instances of the controls
installed on your computer.

For more information on using these commands, see “Creating an ActiveX
Control” on page 10-3.

Registering a Custom Control
If your MATLAB program uses a custom control (e.g., one that you have
created especially for your application), you must register it with the Microsoft
Windows operating system before you can use it. You can do this from your
MATLAB program by issuing an operating system command:

!regsvr32 /s filename.ocx

where filename is the name of the file containing the control. Using this
command in your program enables you to provide custom-made controls
that you make available to other users by registering the control on their
computer when they run your MATLAB program. You might also want to
supply versions of a Microsoft ActiveX control to ensure that all users have
the same version.

For more information about registration, see “Registering Controls and
Servers” on page 9-6.

9-10

Use Internet Explorer® Program in a MATLAB® Figure

Use Internet Explorer Program in a MATLAB Figure
This example uses the ActiveX control Shell.Explorer, which is exposed by
the Microsoft Internet Explorer application, to include an HTML viewer in a
MATLAB figure. The figure’s window button down function is then used to
select a graphics object when the user clicks the graph and load the object’s
property documentation into the HTML viewer.

Techniques Demonstrated

• Using Internet Explorer from an ActiveX client program.

• Defining a window button down function that displays HTML property
documentation for whatever object the user clicks.

• Defining a resize function for the figure that also resizes the ActiveX object
container.

Using the Figure to Access Properties
This example creates a larger than normal figure window that contains an
axes object and an HTML viewer on the lower part of the figure window. By
default, the viewer displays the URL http://www.mathworks.com. When you
issue a plotting command, such as:

surfc(peaks(20))

the graph displays in the axes.

Click anywhere in the graph to see the property documentation for the
selected object.

9-11

9 Using COM Objects from MATLAB®

Complete Code Listing
You can open the file that implements this example in MATLAB Editor or
you can run this example with the following links:

• Open file in editor

• Run this example

9-12

Use Internet Explorer® Program in a MATLAB® Figure

Creating the Figure
This example defines the figure size based on the default figure size and adds
space for the ActiveX control. Here is the code to define the figure:

dfpos = get(0,'DefaultFigurePosition');

hfig = figure('Position',dfpos([1 2 3 4]).*[.8 .2 1 1.65],...

'Menu','none','Name','Create a plot and click on an object',...

'ResizeFcn',@reSize,...

'WindowButtonDownFcn',@wbdf,...

'Renderer','Opengl',...

'DeleteFcn',@figDelete);

Note that the figure also defines a resize function and a window button
down function by assigning function handles to the ResizeFcn and
WindowButtonDownFcn properties. The callback functions reSize and wbdf
are defined as nested functions in the same file.

The figure’s delete function (called when the figure is closed) provides a
mechanism to delete the control.

Calculating the ActiveX Object Container Size
The actxcontrol function creates the ActiveX control inside the specified
figure and returns the control’s handle. You need to supply the following
information:

• Control’s programmatic identifier (use actxcontrollist to find it)

• Location and size of the control container in the figure (pixels) [left bottom
width height]

• Handle of the figure that contains the control:

conSize = calcSize; % Calculate the container size

hExp = actxcontrol('Shell.Explorer.2',conSize,hfig); % Create the control

Navigate(hExp,'http://www.mathworks.com/'); % Specify content of html viewer

The nested function, calcSize calculates the size of the object container
based on the current size of the figure. calcSize is also used by the figure
resize function, which is described in the next section.

9-13

9 Using COM Objects from MATLAB®

function conSize = calcSize

fp = get(hfig,'Position'); % Get current figure size

conSize = [0 0 1 .45].*fp([3 4 3 4]); % Calculate container size

end % calcSize

Automatic Resize
In MATLAB, you can change the size of a figure and the axes automatically
resize to fit the new size. This example implements similar resizing behavior
for the ActiveX object container within the figure using the object’s move
method. This method enables you to change both size and location of the
ActiveX object container (i.e., it is equivalent to setting the figure Position
property).

When you resize the figure window, the MATLAB software automatically
calls the function assigned to the figure’s ResizeFcn property. This example
implements the nested function reSize for the figure reSize function.

ResizeFcn at Figure Creation
The resize function first determines if the ActiveX object exists because
the MATLAB software calls the figure resize function when the figure is
first created. Since the ActiveX object has not been created at this point,
the resize function simply returns.

When the Figure Is Resized
When you change the size of the figure, the resize function executes and
does the following:

• Calls the calcSize function to calculate a new size for the control container
based on the new figure size.

• Calls the control’s move method to apply the new size to the control.

Figure ResizeFcn.

function reSize(src,evnt)
if ~exist('hExp','var')

return
end
conSize = calcSize;

9-14

../ref/figure_props.html#ResizeFcn

Use Internet Explorer® Program in a MATLAB® Figure

move(hExp,conSize);
end % reSize

Selecting Graphics Objects
This example uses the figure WindowButtonDownFcn property to define a
callback function that handles mouse click events within the figure. When
you click the left mouse button while the cursor is over the figure, the
MATLAB software executes the WindowButtonDownFcn callback on the mouse
down event.

The callback determines which object was clicked by querying the figure
CurrentObject property, which contains the handle of the graphics object
most recently clicked. Once you have the object’s handle, you can determine
its type and then load the appropriate HTML page into the Shell.Explorer
control.

The nested function wbdf implements the callback. Once it determines the
type of the selected object, it uses the control Navigate method to display the
documentation for the object type.

Figure WindowButtonDownFcn.

function wbdf(src,evnt)

cobj = get(hfig,'CurrentObject');

if isempty(cobj)

disp('Click somewhere else')

return

end

pth = 'http://www.mathworks.com/help/techdoc/ref/';

typ = get(cobj,'Type');

switch typ

case ('figure')

Navigate(hExp,[pth,'figure_props.html']);

case ('axes')

Navigate(hExp,[pth,'axes_props.html']);

case ('line')

Navigate(hExp,[pth,'line_props.html']);

case ('image')

Navigate(hExp,[pth,'image_props.html']);

case ('patch')

9-15

../ref/figure_props.html#WindowButtonDownFcn

9 Using COM Objects from MATLAB®

Navigate(hExp,[pth,'patch_props.html']);

case ('surface')

Navigate(hExp,[pth,'surface_props.html']);

case ('text')

Navigate(hExp,[pth,'text_props.html']);

case ('hggroup')

Navigate(hExp,[pth,'hggroupproperties.html']);

otherwise % Display property browser

Navigate(hExp,[pth(1:end-4),'infotool/hgprop/doc_frame.html']);

end

end % wbdf

Closing the Figure
This example uses the figure delete function (DeleteFcn property) to delete
the ActiveX object before closing the figure. The MATLAB software calls the
figure delete function before deleting the figure, which enables the function
to perform any clean up needed before closing the figure. The figure delete
function calls the control’s delete method.

function figDelete(src,evnt)
hExp.delete;

end

9-16

../ref/figure_props.html#DeleteFcn

Add Grid ActiveX® Control in a Figure

Add Grid ActiveX Control in a Figure
This example adds a Microsoft ActiveX spreadsheet control to a figure, which
also contains an axes object for plotting the data displayed by the control.
Clicking a column in the spreadsheet causes the data in that column to be
plotted. Clicking down and dragging the mouse across multiple columns plots
all columns touched.

Techniques Demonstrated

• Registering a control for use on your system.

• Writing a handler for one of the control’s events and using the event to
execute MATLAB plotting commands.

• Writing a resize function for the figure that manages the control’s size
as users resize the figure.

Using the Control
This example assumes that your data samples are organized in columns and
that the first cell in each column is a title, which is used by the legend. See
“Complete Code Listing” on page 9-18 for an example of how to load data
into the control.

Once the data is loaded, click the column to plot the data. The following
picture shows a graph of the results of Test2 and Test3 created by selecting
column B and dragging and releasing on column C.

9-17

9 Using COM Objects from MATLAB®

Complete Code Listing
You can open the file used to implement this example in MATLAB Editor:

• Open file in editor.

9-18

Add Grid ActiveX® Control in a Figure

Preparing to Use the Control
The ActiveX control used in this example is typical of those downloadable
from the Internet. Once you have downloaded the files you need, register the
control on your system using the DOS command regsvr32. In a command
prompt, enter a command of the following form:

regsvr32 sgrid.ocx

From the MATLAB command line, type:

system 'regsvr32 sgrid.ocx'

See the section “Registering Controls and Servers” on page 9-6 for more
information.

Finding the Control’s ProgID
Once you have installed and registered the control, you can obtain its
programmatic identifier using the ActiveX Control Selector dialog. To
display this dialog box, use the actxcontrolselect command. Locate the
control in the list and the selector displays the control and the ProgID.

9-19

9 Using COM Objects from MATLAB®

Creating a Figure to Contain the Control
This example creates a figure that contains an axes object and the grid
control. The first step is to determine the size of the figure and then create
the figure and axes. This example uses the default figure and axes size
(obtained from the respective Position properties) to calculate a new size
and location for each object.

dfpos = get(0,'DefaultFigurePosition');
dapos = get(0,'DefaultAxesPosition');
hfig = figure('Position',dfpos([1 2 3 4]).*[1 .8 1 1.25],...

'Name','Select the columns to plot',...
'Renderer','ZBuffer',...
'ResizeFcn',{@reSize dfpos(3)});

hax = axes('Position',dapos([1 2 3 4]).*[1 4 1 .65]);

9-20

Add Grid ActiveX® Control in a Figure

The above code moves the figure down from the top of the screen (multiply
second element in position vector by .8) and increases the height of the figure
(multiply fourth element in position vector by 1.25). Axes are created and
sized in a similar way.

Creating an Instance of the Control
Use the actxcontrol function to create an instance of the control in a figure
window. This function creates a container for the control and enables you to
specify the size of this container, which usually defines the size of the control.
See “Managing Figure Resize” on page 9-23 for a specific example.

Specifying the Size and Location
The control size and location in the figure is calculated by a nested function
calcSize. This function is used to calculate both the initial size of the control
container and the size resulting from resize of the figure. It gets the figure’s
current position (i.e., size and location) and scales the four-element vector so
that the control container is

• Positioned at the lower-left corner of the figure.

• Equal to the figure in width.

• Has a height that is .35 times the figure’s height.

The value returned is of the correct form to be passed to the actxcontrol
function and the control’s move method.

function conSize = calcSize
fp = get(hfig,'Position');
conSize = fp([3 4 3 4]).*[0 0 1 .35];

end % conSize

Creating the Control
Creating the control entails the following steps:

• Calculating the container size

• Instantiating the control in the figure

• Setting the number of rows and columns to match the size of the data array

9-21

9 Using COM Objects from MATLAB®

• Specifying the width of the columns

conSize = calcSize;
hgrid = actxcontrol('SGRID.SgCtrl.1',conSize,hfig);
hgrid.NRows = size(dat,1);
hgrid.NColumns = size(dat,2);
colwth = 4350; hdwth = hgrid.HdrWidth;
SetColWidth(hgrid,0,sz(2)-1,colwth,1)

Using Mouse-Click Event to Plot Data
This example uses the control’s Click event to implement interactive plotting.
When a user clicks the control, the MATLAB software executes a function
that plots the data in the column where the mouse click occurred. Users
can also select multiple columns by clicking down and dragging the cursor
over more than one column.

Registering the Event
You need to register events with MATLAB so that when the event occurs (a
mouse click in this case), the MATLAB software responds by executing the
event handler function. Register the event with the registerevent function:

hgrid.registerevent({'Click',@click_event});

Pass the event name (Click) and a function handle for the event handler
function inside a cell array.

Defining the Event Handler
The event handler function click_event uses the control’s GetSelection
method to determine what columns and rows have been selected by the mouse
click. This function plots the data in the selected columns as lines, one line
per column.

It is possible to click down on a column and drag the mouse to select multiple
columns before releasing the mouse. In this case, each column is plotted
because the event is not fired until the mouse button is released (which
reflects the way the author chose to implement the control). The legend
function uses the column number stored in the variable cols to label the

9-22

Add Grid ActiveX® Control in a Figure

individual plotted lines. You must add one to cols because the control counts
the columns starting from zero.

Note that you implement event handlers to accept a variable number of
arguments (varargin).

function click_event(varargin)
[row1,col1,row2,col2] = hgrid.GetSelection(1,1,1,1,1);
ncols = (col2-col1)+1;
cols = [col1:col2];

for n = 1:ncols
hgrid.Col = cols(n);
for ii = 1:sz(1)

hgrid.Row = ii;
plot_data(ii,n) = hgrid.Number;

end
end

hgrid.SetSelection(row1,col1,row2,col2);
plot(plot_data)
legend(labels(cols+1))
end % click_event

Managing Figure Resize
The size and location of a MATLAB axes object is defined in units that are
normalized to the figure that contains it. Therefore, when you resize the
figure, the axes automatically resize proportionally. When a figure contains
objects that are not contained in axes, you are responsible for defining a
function that manages the resizing process.

The figure ResizeFcn property references a function that executes whenever
the figure is resized and also when the figure is first created. This example
creates a resize function that manages resizing grid control by doing the
following:

• Disables control updates while changes are being made to improve
performance (use the hDisplay property).

• Calculates a new size for the control container based on the new figure size
(calcSize function).

• Applies the new size to the control container using its move method.

9-23

9 Using COM Objects from MATLAB®

• Scales the column widths of the grid proportional to the change in width of
the figure (SetColWidth method).

• Refreshes the display of the control, showing the new size.

function reSize(src,evnt,dfp)
% Return if control does not exist (figure creation)
if ~exist('hgrid','var')

return
end
% Resize container
hgrid.bDisplay = 0;
conSize = calcSize;
move(hgrid,conSize);
% Resize columns
scl = conSize(3)/dfp;
ncolwth = scl*colwth;
nhdrwth = hdwth*(scl);
hgrid.HdrWidth = nhdrwth;
SetColWidth(hgrid,0,sz(2)-1,ncolwth,2)
hgrid.Refresh;
end % reSize

Closing the Figure
This example uses the figure delete function (DeleteFcn property) to delete
the ActiveX object before closing the figure. The MATLAB software calls the
figure delete function before deleting the figure, which enables the function
to perform any clean up needed before closing the figure. The figure delete
function calls the control’s delete method.

function figDelete(src,evnt)
hgrid.delete;

end

9-24

../ref/figure_props.html#DeleteFcn

Read Excel® Spreadsheet Data

Read Excel Spreadsheet Data
This example creates a graphical interface to access the data in a Microsoft
Excel file. To enable the communication between the MATLAB software and
the spreadsheet program, this example creates an Microsoft ActiveX object in
an Automation server running an Excel application. The MATLAB software
then accesses the data in the spreadsheet through the interfaces provided by
the Excel Automation server.

Techniques Demonstrated
This example shows how to use the following techniques:

• Use of an Automation server to access another application from the
MATLAB software.

• Ways to manipulate Excel data into types used in the GUI and plotting.

• Implementing a GUI that enables plotting of selected columns of the Excel
spreadsheet.

• Inserting a MATLAB figure into an Excel file.

Using the GUI
To use the GUI, select any items in the list box and click the Create Plot
button. The sample data provided with this example contain three input and
three associated response data sets, all of which are plotted versus the first
column in the Excel file, which is the time data.

You can view the Excel data file by clicking the Show Excel Data File
button, and you can save an image of the graph in a different Excel file by
clicking Save Graph button. Note that the Save Graph option creates a
temporary PNG file in the current folder, if you have write-access permission.

The following picture shows the GUI with an input/response pair selected in
the list box and plotted in the axes.

9-25

9 Using COM Objects from MATLAB®

Complete Code Listing
You can open the file used to implement this example in MATLAB Editor
or run this example:

• Open file in editor.

• Run this example.

Excel Spreadsheet Format
This example assumes a particular organization of the Excel spreadsheet, as
shown in the following picture.

9-26

Read Excel® Spreadsheet Data

The format of the Excel file is as follows:

• The first element in each column is a text string that identifies the data
contain in the column. These strings are extracted and used to populate
the list box.

• The first column (Time) is used for the x-axis of all plots of the remaining
data.

• All rows in each column are read into the MATLAB software.

Excel Automation Server
The first step in accessing the spreadsheet data from the MATLAB software
is to run the Excel application in an Automation server process using the
actxserver function and the program ID, excel.application.

exl = actxserver('excel.application');

9-27

9 Using COM Objects from MATLAB®

The ActiveX object that is returned provides access to a number of interfaces
supported by the Excel program. Use the workbook interface to open the
Excel file containing the data.

exlWkbk = exl.Workbooks;

exlFile = exlWkbk.Open([docroot '/techdoc/matlab_external/examples/input_resp_data.xls']);

Use the workbook’s sheet interface to access the data from a range object,
which stores a reference to a range of data from the specified sheet. This
example accesses all the data in column A, first cell to column G, last cell:

exlSheet1 = exlFile.Sheets.Item('Sheet1');

robj = exlSheet1.Columns.End(4); % Find the end of the column

numrows = robj.row; % And determine what row it is

dat_range = ['A1:G' num2str(numrows)]; % Read to the last row

rngObj = exlSheet1.Range(dat_range);

At this point, the entire data set from the Excel file’s sheet1 is accessed via
the range object interface. This object returns the data in a MATLAB cell
array, which can contain both numeric and character data:

exlData = rngObj.Value;

Manipulating the Data in the MATLAB Workspace
Now that the data is in a cell array, you can use MATLAB functions to extract
and reshape parts of the data into the forms needed to use in the GUI and
pass to the plot function.

The following code performs two operations:

• Extracts numeric data from the cell array (indexing with curly braces),
concatenates the individual doubles returned by the indexing operation
(square brackets), and reshapes it into an array that arranges the data
in columns.

• Extracts the string in the first cell in each column of an Excel sheet and
stores them in a cell array, which is used to generate the items in the list
box.

for ii = 1:size(exlData,2)

matData(:,ii) = reshape([exlData{2:end,ii}],size(exlData(2:end,ii)));

9-28

Read Excel® Spreadsheet Data

lBoxList{ii} = [exlData{1,ii}];

end

The Plotter GUI
This example uses a GUI that enables you to select from a list of input and
response data from a list box. All data is plotted as a function of time (which is,
therefore, not a choice in the list box) and you can continue to add more data
to the graph. Each data plot added to the graph causes the legend to expand.

Additional implementation details include:

• A legend that updates as you add data to a graph

• A clear button that enables you to clear all graphs from the axes

• A save button that saves the graph as a PNG file and adds it to another
Excel file

• A toggle button that shows or hides the Excel file being accessed

• The figure delete function (DeleteFcn property), which the MATLAB
software calls when the figure is closed, is used to terminate the
Automation server process.

Selecting and Plotting Data
When you click the Create Plot button, its callback function queries the list
box to determine what items are selected and plots each data versus time.
The legend is updated to display any new data while maintaining the legend
for the existing data.

function plotButtonCallback(src,evnt)
iSelected = get(listBox,'Value');
grid(a,'on');hold all
for p = 1:length(iSelected)

switch iSelected(p)
case 1

plot(a,tme,matData(:,2))
case 2

plot(a,tme,matData(:,3))
case 3

plot(a,tme,matData(:,4))

9-29

../ref/figure_props.html#DeleteFcn

9 Using COM Objects from MATLAB®

case 4
plot(a,tme,matData(:,5))

case 5
plot(a,tme,matData(:,6))

case 6
plot(a,tme,matData(:,7))

otherwise
disp('Select data to plot')

end
end
[b,c,g,lbs] = legend([lbs lBoxList(iSelected+1)]);
end % plotButtonCallback

Clearing the Axes
The plotter is designed to continually add graphs as the user selects data from
the list box. The Clear Graph button clears and resets the axes and clears
the variable used to store the labels of the plot data (used by legend).

%% Callback for clear button
function clearButtonCallback(src,evt)

cla(a,'reset')
lbs = '';

end % clearButtonCallback

Display or Hide Excel File
The MATLAB program has access to the properties of the Excel application
running in the Automation server. By setting the Visible property to 1 or 0,
this callback controls the visibility of the Excel file.

%% Display or hide Excel file
function dispButtonCallback(src,evt)

exl.visible = get(src,'Value');
end % dispButtonCallback

Close Figure and Terminate Excel Automation Process
Since the Excel Automation server runs in a separate process from the
MATLAB software, you must terminate this process explicitly. There is no
reason to keep this process running after the GUI has been closed, so this

9-30

Read Excel® Spreadsheet Data

example uses the figure’s delete function to terminate the Excel process with
the Quit method. Also, terminate the second Excel process used for saving
the graph. See “Inserting MATLAB Graphs Into Excel Spreadsheets” on page
9-31 for information on this second process.

%% Terminate Excel processes
function deleteFig(src,evt)

exlWkbk.Close
exlWkbk2.Close
exl.Quit
exl2.Quit

end % deleteFig

Inserting MATLAB Graphs Into Excel Spreadsheets
You can save the graph created with this GUI in an Excel file. (This example
uses a separate Excel Automation server process for this purpose.) The
callback for the Save Graph push button creates the image and adds it to
an Excel file:

• Both the axes and legend are copied to an invisible figure configured to
print the graph as you see it on the screen (figure PaperPositionMode
property is set to auto).

• The print command creates the PNG image.

• Use the Shapes interface to insert the image in the Excel workbook.

The server and interfaces are instanced during GUI initialization phase:

exl2 = actxserver('excel.application');
exlWkbk2 = exl2.Workbooks;
wb = invoke(exlWkbk2,'Add');
graphSheet = invoke(wb.Sheets,'Add');
Shapes = graphSheet.Shapes;

The following code implements the Save Graph button callback:

function saveButtonCallback(src,evt)

tempfig = figure('Visible','off','PaperPositionMode','auto');

tempfigfile = [tempname '.png'];

ah = findobj(f,'type','axes');

9-31

9 Using COM Objects from MATLAB®

copyobj(ah,tempfig) % Copy both graph axes and legend axes

print(tempfig,'-dpng',tempfigfile);

Shapes.AddPicture(tempfigfile,0,1,50,18,300,235);

exl2.visible = 1;

end

9-32

Supported Client/Server Configurations

Supported Client/Server Configurations

In this section...

“Introduction” on page 9-33

“MATLAB Client and In-Process Server” on page 9-33

“MATLAB Client and Out-of-Process Server” on page 9-34

“COM Implementations Supported by MATLAB Software” on page 9-35

“Client Application and MATLAB Automation Server” on page 9-35

“Client Application and MATLAB Engine Server” on page 9-37

Introduction
You can configure MATLAB software to either control or be controlled by
other COM components. When MATLAB controls another component,
MATLAB is the client, and the other component is the server. When another
component controls MATLAB, MATLAB is the server.

MATLAB Client and In-Process Server
The following diagram shows how the MATLAB client interacts with an
“In-Process Server” on page 9-5.

The server exposes its properties and methods through the IDispatch
(Automation) interface or a Custom interface, depending on which interfaces
the component implements. For information on accessing interfaces, see
“Getting Interfaces to COM Object” on page 10-60 .

9-33

9 Using COM Objects from MATLAB®

Microsoft ActiveX Controls
An ActiveX control is an object with some type of graphical user interface
(GUI). When the MATLAB software constructs an ActiveX control, it places
the control’s GUI in a MATLAB figure window. Click the various options
available in the user interface (e.g., making a particular menu selection) to
trigger events that get communicated from the control in the server to the
client MATLAB application. The client decides what to do about each event
and responds accordingly.

MATLAB comes with a sample ActiveX control called mwsamp. This control
draws a circle on the screen and displays some text. You can use this control
to try out MATLAB COM features. For more information, see “MATLAB
Sample Control” on page 10-76.

DLL Servers
Any COM component that has been implemented as a dynamic link library
(DLL) is also instantiated in an in-process server. That is, it is created in the
same process as the MATLAB client application. When MATLAB uses a DLL
server, it runs in a separate window rather than a MATLAB figure window.

MATLAB responds to events generated by a DLL server in the same way
as events from an ActiveX control.

For More Information
To learn more about working with MATLAB as a client, see “Creating COM
Objects” on page 10-2.

MATLAB Client and Out-of-Process Server
In this configuration, a MATLAB client application interacts with a
component that has been implemented as a “Local Out-of-Process Server”
on page 9-5. Examples of out-of-process servers are Microsoft Excel and
Microsoft Word programs.

9-34

Supported Client/Server Configurations

As with in-process servers, this server exposes its properties and methods
through the IDispatch (Automation) interface or a Custom interface,
depending on which interfaces the component implements. For information
on accessing interfaces, see “Getting Interfaces to COM Object” on page 10-60.

Since the client and server run in separate processes, you have the option of
creating the server on any system on the same network as the client.

If the component provides a user interface, its window is separate from the
client application.

MATLAB responds to events generated by an out-of-process server in the
same way as events from an ActiveX control.

For More Information
To learn more about working with MATLAB as a client, see “Creating COM
Objects” on page 10-2.

COM Implementations Supported by MATLAB
Software
MATLAB only supports COM implementations that are compatible with
the Microsoft Active Template Library (ATL) API. In general, your COM
object should be able to be contained in an ATL host window in order to work
with MATLAB.

Client Application and MATLAB Automation Server
MATLAB operates as the Automation server in this configuration. It can
be created and controlled by any Microsoft Windows program that can be
an Automation controller. Some examples of Automation controllers are

9-35

9 Using COM Objects from MATLAB®

Microsoft Excel, Microsoft Access™, Microsoft Project, and many Microsoft
Visual Basic and Microsoft Visual C++ programs.

MATLAB Automation server capabilities include the ability to execute
commands in the MATLAB workspace, and to get and put matrices directly
from and into the workspace. You can start a MATLAB server to run in either
a shared or dedicated mode. You also have the option of running it on a local
or remote system.

To create the MATLAB server from an external application program, use
the appropriate function from that language to instantiate the server. (For
example, use the Visual Basic CreateObject function.) For the programmatic
identifier, specify matlab.application. To run MATLAB as a dedicated
server, use the matlab.application.single programmatic identifier. See
“Using MATLAB Software as a Shared or Dedicated Server” on page 11-3
for more information.

The function that creates the MATLAB server also returns a handle to
the properties and methods available in the server through the IDispatch
interface. See “MATLAB Automation Server Functions and Properties” on
page 11-7 for descriptions of these methods.

Note Because VBScript client programs require an Automation interface
to communicate with servers, this is the only configuration that supports a
VBScript client.

For More Information
To learn more about working with Automation servers, see “MATLAB COM
Automation Server Interface” on page 11-2.

9-36

Supported Client/Server Configurations

Client Application and MATLAB Engine Server
MATLAB provides a faster custom interface called IEngine for client
applications written in C, C++, or Fortran. MATLAB uses IEngine to
communicate between the client application and the MATLAB engine running
as a COM server.

MATLAB provides “The Engine Library” on page 6-4 of functions that let you
to start and end the server process, and to send commands to be processed
by MATLAB.

For More Information
To learn more about the MATLAB engine and the functions provided in its
C/C++ and Fortran API Reference libraries, see “Call MATLAB Engine”.

9-37

9 Using COM Objects from MATLAB®

9-38

10

MATLAB COM Client
Support

• “Creating COM Objects” on page 10-2

• “Explore COM Objects” on page 10-12

• “Use Object Properties” on page 10-19

• “Use Methods” on page 10-29

• “Use Events” on page 10-42

• “Getting Interfaces to COM Object” on page 10-60

• “Save COM Objects” on page 10-63

• “Handling COM Data in MATLAB Software” on page 10-65

• “Use MATLAB Application as Automation Client” on page 10-76

• “Deploy ActiveX Controls Requiring Run-Time Licenses” on page 10-81

• “Use Microsoft Forms 2.0 Controls” on page 10-83

• “Use COM Collections” on page 10-85

• “Use MATLAB Application as DCOM Client” on page 10-86

• “MATLAB COM Support Limitations” on page 10-87

10 MATLAB® COM Client Support

Creating COM Objects

In this section...

“Creating the Server Process — An Overview” on page 10-2

“Creating an ActiveX Control” on page 10-3

“Creating a COM Server” on page 10-9

Creating the Server Process — An Overview
MATLAB software provides two functions to create a COM object:

• actxcontrol— Creates a Microsoft ActiveX control in a MATLAB figure
window.

• actxserver — Creates an in-process server for a dynamic link library
(DLL) component or an out-of-process server for an executable (EXE)
component.

The following diagram shows the basic steps in creating the server process.
For more information on how the MATLAB software establishes interfaces
to the resultant COM object, see “Getting Interfaces to COM Object” on
page 10-60.

10-2

Creating COM Objects

Creating an ActiveX Control
You can create an instance of an ActiveX control from the MATLAB client
using either a graphical user interface (GUI) or the actxcontrol function
from the command line. Either of these methods creates an instance of the
control in the MATLAB client process and returns a handle to the primary
interface to the COM object. Through this interface, you can access the
object’s public properties or methods. You can also establish additional

10-3

10 MATLAB® COM Client Support

interfaces to the object, including interfaces that use IDispatch, and any
custom interfaces that might exist.

This section describes how to create an instance of the control and how to
position it in the MATLAB figure window.

• “Listing Installed Controls” on page 10-4

• “Finding a Particular Control” on page 10-5

• “Creating Control Objects Using a GUI” on page 10-5

• “Creating Control Objects from the Command Line” on page 10-8

• “Repositioning the Control in a Figure Window” on page 10-8

• “Limitations to ActiveX Support” on page 10-9

Listing Installed Controls
The actxcontrollist function shows you what COM controls are currently
installed on your system. Type:

list = actxcontrollist

MATLAB displays a cell array listing each control, including its name,
programmatic identifier (ProgID), and file name.

This example shows information for several controls (your results might be
different):

list = actxcontrollist;

s=sprintf(' Name = %s\n ProgID = %s\n File = %s\n', list{114:115,:})

MATLAB displays:

s =

Name = OleInstall Class

ProgID = Outlook Express Mime Editor

File = OlePrn.OleInstall.1

Name = OutlookExpress.MimeEdit.1

ProgID = C:\WINNT\System32\oleprn.dll

File = C:\WINNT\System32\inetcomm.dll

10-4

Creating COM Objects

Finding a Particular Control
If you know the name of a control, you can find it in the list and display its
ProgID and the path of the folder containing it. For example, some of the
examples in this documentation use the Mwsamp2 control. You can find it
with the following code:

list = actxcontrollist;
for ii = 1:length(list)

if ~isempty(strfind([list{ii,:}],'Mwsamp2'))
s = sprintf(' Name = %s\n ProgID = %s\n File = %s\n', ...

list{ii,:})
end

end

MATLAB displays:

s =
Name = Mwsamp2 Control
ProgID = MWSAMP.MwsampCtrl.2
File =
D:\Apps\MATLAB\R2006a\toolbox\matlab\winfun\win32\mwsamp2.ocx

The location of this file might be different on your system.

Creating Control Objects Using a GUI
Using the actxcontrolselect function is the simplest way to create an
instance of a control object. This function displays a GUI listing all controls
installed on your system. When you select an item from the list and click the
Create button, MATLAB creates the control and returns a handle to it. Type:

h = actxcontrolselect

MATLAB displays the Select an ActiveX Control dialog.

10-5

10 MATLAB® COM Client Support

The interface has an ActiveX Control List selection pane on the left and a
Preview pane on the right. Click one of the control names in the selection
pane to see a preview of the control. (A blank preview pane means that the
control does not have a preview.) An error message appears in the preview
pane if MATLAB cannot create the instance.

Setting Properties with actxcontrolselect. Click the Properties button
in the Preview pane to change property values when creating the control.
You can select which figure window to put the control in (Parent field), where
to position it in the window (X and Y fields), and what size to make the
control (Width and Height).

You can register events you want the control to respond to in this window.
(For an explanation of event registration, see “Responding to Events — an

10-6

Creating COM Objects

Overview” on page 10-44.) Register an event and the callback routine to
handle that event by entering the name of the routine to the right of the
event under Event Handler.

You can select callback routines by clicking a name in the Event column,
and then clicking the Browse button. To assign a callback routine to more
than one event, first press the Ctrl key and click individual event names, or
drag the mouse over consecutive event names, and then click Browse to
select the callback routine.

MATLAB only responds to registered events, so if you do not specify a
callback, the event is ignored.

For example, in the ActiveX Control List pane, select Calendar Control
10.0 (the version on your system might be different) and click Properties.
MATLAB displays the Choose ActiveX Control Creation Parameter dialog
box. Enter aWidth of 500 and a Height of 350 to change the default size for
the control. Click OK in this window, and click Create in the next window to
create an instance of the Calendar control.

You can also set control parameters using the actxcontrol function. One
parameter you can set with actxcontrol, but not with actxcontrolselect,
is the name of an initialization file. When you specify this file name, MATLAB
sets the initial state of the control to that of a previously saved control.

Information Returned by actxcontrolselect. The actxcontrolselect
function creates an object that is an instance of the MATLAB COM class.
The function returns up to two arguments: a handle for the object, h, and a
1-by-3 cell array, info, containing information about the control. To get this
information, type:

[h, info] = actxcontrolselect

The cell array info shows the name, ProgID, and file name for the control.

If you select the Calendar Control, and then click Create, MATLAB displays
information like:

h =
COM.mscal.calendar.7

info =

10-7

10 MATLAB® COM Client Support

[1x20 char] 'MSCAL.Calendar.7' [1x41 char]

To expand the info cell array, type:

info{:}

MATLAB displays:

ans =
Calendar Control 9.0

ans =
MSCAL.Calendar.7

ans =
D:\Applications\MSOffice\Office\MSCAL.OCX

Creating Control Objects from the Command Line
If you already know which control you want and you know its ProgID, you can
bypass the GUI by using the actxcontrol function to create an instance of it.

The ProgID is the only required input to this function. However, as with
actxcontrolselect, you can supply additional inputs that enable you to
select which figure window to put the control in, where to position it in the
window, and what size to make it. You can also register any events you want
the control to respond to, or set the initial state of the control by reading that
state from a file. See the actxcontrol reference page for a full explanation of
its input arguments.

The actxcontrol function returns a handle to the primary interface to the
object. Use this handle to reference the object in other COM function calls.
You can also use the handle to obtain additional interfaces to the object. For
more information on using interfaces, see “Getting Interfaces to COM Object”
on page 10-60.

Repositioning the Control in a Figure Window
After creating a control, you can change its shape and position in the window
with the move function.

10-8

Creating COM Objects

Observe what happens to the object created in the last section when you
specify new origin coordinates (70, 120) and new width and height dimensions
of 400 and 350:

h.move([70 120 400 350]);

Limitations to ActiveX Support
A MATLAB COM ActiveX control container does not in-place activate controls
until they are visible.

Creating a COM Server

Instantiating a DLL Component
To create a server for a component implemented as a dynamic link library
(DLL), use the actxserver function. MATLAB creates an instance of the
component in the same process that contains the client application.

The syntax for actxserver, when used with a DLL component, is
actxserver(ProgID), where ProgID is the programmatic identifier for the
component.

actxserver returns a handle to the primary interface to the object. Use this
handle to reference the object in other COM function calls. You can also use
the handle to obtain additional interfaces to the object. For more information
on using interfaces, see “Getting Interfaces to COM Object” on page 10-60.

Unlike Microsoft ActiveX controls, any user interface displayed by the server
appears in a separate window.

You cannot use a 32-bit in-process DLL COM object in a 64-bit MATLAB
application. For information about this restriction, see the Technical Support
solution 1-35LZ4G Why am I not able to use 32-bit DLL COM Objects in
64-bit MATLAB.

10-9

http://www.mathworks.com/support/solutions/data/1-35LZ4G.html
http://www.mathworks.com/support/solutions/data/1-35LZ4G.html

10 MATLAB® COM Client Support

Instantiating an EXE Component
You can use the actxserver function to create a server for a component
implemented as an executable (EXE). In this case, MATLAB instantiates the
component in an out-of-process server.

The syntax for actxserver, when used to create an executable, is
actxserver(ProgID, sysname), where ProgID is the programmatic identifier
for the component, and sysname is an optional argument used in configuring a
distributed COM (DCOM) system.

actxserver returns a handle to the primary interface to the COM object.
Use this handle to reference the object in other COM function calls. You can
also use the handle to obtain additional interfaces to the object. For more
information on using interfaces, see “Getting Interfaces to COM Object” on
page 10-60.

Any user interface displayed by the server appears in a separate window.

This example creates a COM server application running the Microsoft Excel
spreadsheet program. The handle is assigned to h.

h = actxserver('Excel.Application')

MATLAB displays:

h =
COM.excel.application

MATLAB can programmatically connect to an instance of a COM Automation
server application that is already running on your computer. Use the
actxGetRunningServer function to get a reference to such an application.
The syntax is actxGetRunningServer(ProgID), where ProgID is the
programmatic identifier for the component.

This example gets a reference to the Excel program, which must already be
running on your system. The returned handle is assigned to h.

h = actxGetRunningServer('Excel.Application')

MATLAB displays:

10-10

Creating COM Objects

h =
COM.excel.application

10-11

10 MATLAB® COM Client Support

Explore COM Objects

In this section...

“About Your Object” on page 10-12

“Exploring Properties” on page 10-12

“Exploring Methods” on page 10-14

“Exploring Events” on page 10-14

“Exploring Interfaces” on page 10-15

“Identifying Objects and Interfaces” on page 10-16

About Your Object
A COM object has properties, methods, events, and interfaces. Your vendor
documentation describes these features, but you can also learn about your
object using MATLAB commands.

Exploring Properties
A property is information that is associated with a COM object. This
topic shows you how to look at the properties of your object. For detailed
information on reading and setting property values, see “Use Object
Properties” on page 10-19.

To see a list of all properties of an object, you can use the get function or
the Property Inspector, a GUI provided by MATLAB to display and modify
properties.

In this section, we explore a Microsoft Excel object. To begin, create the
object myApp:

myApp = actxserver('Excel.Application');

Listing Properties
The get function lists all properties. For example, from the MATLAB
command prompt, type:

10-12

Explore COM Objects

myApp.get

MATLAB displays information like the following:

Application: [1x1 Interface.Microsoft_Excel_9.0_
Object_Library._Application]

Creator: 'xlCreatorCode'
Parent: [1x1 Interface.Microsoft_Excel_9.0_

Object_Library._Application]
ActiveCell: []

ActiveChart: [1x50 char]
:

OperatingSystem: 'Windows (32-bit) NT 5.01'
OrganizationName: 'The MathWorks'

:

One property is OrganizationName; its value in this example is The
MathWorks.

Using the Property Inspector
The Property Inspector opens a new window showing the object’s properties.
This topic explains how to open it. For detailed information, see “Using the
Property Inspector” on page 10-22.

You can open the Property Inspector using either of these methods:

• Call the inspect function from the MATLAB command line.

• Double-click the object in the MATLAB Workspace browser.

For example, type:

myApp.inspect

The Inspector window opens. Scroll down until you see the OrganizationName
property. It should be the same value the get function returned; in this case,
The MathWorks.

10-13

10 MATLAB® COM Client Support

Exploring Methods
A method is a procedure you call to perform a specific action on the COM
object. This topic shows you how to identify methods belonging to your object.
For detailed information, see “Use Methods” on page 10-29.

To see a list of all methods supported by an object, use the methods and
invoke functions. Alternatively, you can use the methodsview function, which
displays the methods in a separate window.

Exploring Events
An event is typically a user-initiated action that takes place in a server
application, which often requires a reaction from the client. For example, a
user clicking the mouse at a particular location in a server interface window
might require the client to take some action in response. When an event is
fired, the server communicates this occurrence to the client. If the client is
listening for this particular type of event, it responds by executing a routine
called an event handler.

This topic shows you how to identify events available to your object. For
detailed information, see “Use Events” on page 10-42. For information on
event handlers, see “Writing Event Handlers” on page 10-54.

Use the events function to list all events known to the control or server and
use the eventlisteners function to list only registered events.

In this section, we use the Microsoft Internet Explorer Web browser. To
begin, create the object myNet:

myNet = actxserver('internetexplorer.application');

Listing Server Events
Type:

myNet.events

MATLAB displays event information like:

:

StatusTextChange = void StatusTextChange(string Text)

10-14

Explore COM Objects

ProgressChange = void ProgressChange(int32 Progress,int32 ProgressMax)

CommandStateChange = void CommandStateChange(int32 Command,bool Enable)

:

Listing Registered Events
No events are registered at this time. If you type:

myNet.eventlisteners

MATLAB displays:

ans =
{}

Exploring Interfaces
An interface is a set of related functions used to access a COM object’s
data. When you create a COM object using the actxserver or actxcontrol
functions, MATLAB returns a handle to an interface. You use the get and
interfaces functions to see other interfaces implemented by your object.

In this section, we explore an Excel object. To begin, create the object e:

e = actxserver('Excel.Application');

Additional Interfaces
Components often provide additional interfaces, based on IDispatch. To see
these interfaces, type:

e.get

MATLAB displays information like:

Application: [1x1 Interface.Microsoft_Excel_11.0_Object_Library._Application]

Creator: 'xlCreatorCode'

Parent: [1x1 Interface.Microsoft_Excel_11.0_Object_Library._Application]

ActiveCell: []

ActiveChart: [1x50 char]

:

10-15

10 MATLAB® COM Client Support

Workbooks: [1x1 Interface.Microsoft_Excel_11.0_Object_Library.Workbooks]

:

In this example, Workbooks is an interface. To explore the Workbooks
interface, type:

w = e.Workbooks;

To see its properties, type:

w.get

MATLAB displays:

Application: [1x1 Interface.Microsoft_Excel_11.0_Object_Library._Application]

Creator: 'xlCreatorCode'

Parent: [1x1 Interface.Microsoft_Excel_11.0_Object_Library._Application]

Count: 0

To see its methods, type:

w.invoke

MATLAB displays:

Add = handle Add(handle, Variant(Optional))

Close = void Close(handle)

Item = handle Item(handle, Variant)

Open = handle Open(handle, string, Variant(Optional))

OpenText = void OpenText(handle, string, Variant(Optional))

OpenDatabase = handle OpenDatabase(handle, string, Variant(Optional))

CheckOut = void CheckOut(handle, string)

CanCheckOut = bool CanCheckOut(handle, string)

OpenXML = handle OpenXML(handle, string, Variant(Optional))

Identifying Objects and Interfaces
You can get additional information about a control or server using the
following functions.

10-16

Explore COM Objects

Function Description

class Return the class of an object

isa Determine if an object is of a given MATLAB class

iscom Determine if the input is a COM or ActiveX object

isevent Determine if an item is an event of a COM object

ismethod Determine if an item is a method of a COM object

isprop Determine if an item is a property of a COM object

isinterface Determine if the input is a COM interface

This example creates a COM object in an Automation server running the
Excel application, giving it the handle e, and a Workbooks interface to the
object, with handle w.

e = actxserver('Excel.Application');
w = e.Workbooks;

Use the iscom function to see if e is a handle to a COM object:

e.iscom
ans =

1

Use the isa function to test e against a known class name:

e.isa('COM.excel_application')
ans =

1

Use isinterface to see if w is a handle to a COM interface:

w.isinterface
ans =

1

Use the class function to find out the class of variable w:

w.class
ans =

10-17

10 MATLAB® COM Client Support

Interface.Microsoft_Excel_11.0_Object_Library.Workbooks

To see if UsableWidth is a property of e, use isprop:

e.isprop('UsableWidth')
ans =

1

To see if SaveWorkspace is a method of e, use ismethod:

e.ismethod('SaveWorkspace')
ans =

1

10-18

Use Object Properties

Use Object Properties

In this section...

“About Object Properties” on page 10-19

“Working with Multiple Objects” on page 10-20

“Using Enumerated Values for Properties” on page 10-20

“Using the Property Inspector” on page 10-22

“Custom Properties” on page 10-24

“Properties That Take Arguments” on page 10-25

About Object Properties
You can get the value of a property, and, in some cases, change the value. You
also can add custom properties. This topic explains how to do these tasks. If
you only want to view your object’s properties, see “Exploring Properties”
on page 10-12 for basic information.

Property names are not case sensitive. You can abbreviate them as long as
the name is unambiguous.

Use these MATLAB functions to work with the properties of a COM object.

Function Description

addproperty Add a custom property to a COM object

deleteproperty Remove a custom property from a COM object

get List one or more properties and their values

inspect Display graphical interface to list and modify
property values

isprop Determine if an item is a property of a COM object

propedit Display the control’s built-in property page

set Set the value of one or more properties

10-19

10 MATLAB® COM Client Support

Working with Multiple Objects
You can use the get and set functions on more than one object at a time by
creating a vector of object handles and using these commands on the vector.

Note To get or set values for multiple objects, use the get and set functions
explicitly. You can only use dot syntax, for example H.Day, on scalar objects.

Using Enumerated Values for Properties
Enumeration makes examining and changing properties easier because each
possible value for the property is given a string to represent it. For example,
one of the values for the DefaultSaveFormat property in a Microsoft Excel
spreadsheet is xlUnicodeText. This is easier to remember than a numeric
value like 57.

This section covers the following topics:

• “Finding All Enumerated Properties” on page 10-20

• “Setting Enumerated Values” on page 10-21

• “Setting Enumerated Values with the Property Inspector” on page 10-22

Finding All Enumerated Properties
The get and set functions support enumerated values for properties for those
applications that provide them. Use the set function to see which properties
use enumerated types.

For example, create an instance of an Excel spreadsheet:

h = actxserver('Excel.Application');

Type:

h.set

MATLAB displays:

ans =

10-20

Use Object Properties

Creator: {'xlCreatorCode'}
ConstrainNumeric: {}

CopyObjectsWithCells: {}
Cursor: {4x1 cell}

CutCopyMode: {2x1 cell}
.
.

MATLAB displays the properties that accept enumerated types as nonempty
cell arrays. In this example, Cursor and CutCopyMode accept a choice of
settings. Properties for which there is only one possible setting are displayed
as a one row cell array (see Creator, above).

Use the get function to display the current values of these properties. Type:

h.get

MATLAB displays information such as:

Creator: 'xlCreatorCode'
ConstrainNumeric: 0

CopyObjectsWithCells: 1
Cursor: 'xlDefault'

CutCopyMode: ''
.
.

Setting Enumerated Values
To list all possible enumerated values for a specific property, use set with
the property name argument. The output is a cell array of strings, one string
for each possible setting of the specified property:

h.set('Cursor')
ans =

'xlIBeam'
'xlDefault'
'xlNorthwestArrow'
'xlWait'

10-21

10 MATLAB® COM Client Support

To set the value of a property, assign the enumerated value to the property
name:

handle.property = 'enumeratedvalue';

You can also use the set function with the property name and enumerated
value:

handle.set('property', 'enumeratedvalue');

You have a choice of using the enumeration or its equivalent numeric value.
You can abbreviate the enumeration string, as in the third line of the
following example, as long as you use enough letters in the string to make it
unambiguous. Enumeration strings are not case sensitive.

Make the Excel spreadsheet window visible, and then change the cursor from
the MATLAB client. To see how the cursor has changed, click the spreadsheet
window. Either of the following assignments to h.Cursor sets the cursor
to the Wait (hourglass) type:

h.Visible = 1;

h.Cursor = 'xlWait'
h.Cursor = 'xlw' % Abbreviated form of xlWait

Read the value of the Cursor property you have just set:

h.Cursor
ans =

xlWait

Setting Enumerated Values with the Property Inspector
You can also set enumerated values using the Property Inspector. To learn
how to use this feature, see “Using the Property Inspector on Enumerated
Values” on page 10-23.

Using the Property Inspector
The Property Inspector enables you to access the properties of COM objects.
To open the Property Inspector, use the inspect function from the MATLAB
command line or double-click the object in the MATLAB Workspace browser.

10-22

Use Object Properties

For example, create a server object running the Excel program. Then set the
object’s DefaultFilePath property to C:\ExcelWork:

h = actxserver('Excel.Application');
h.DefaultFilePath = 'C:\ExcelWork';

Next call the inspect function to display a new window showing the server
object’s properties:

h.inspect

Scroll down until you see the DefaultFilePath property that you just
changed. It should read C:\ExcelWork.

Using the Property Inspector, change DefaultFilePath once more, this
time to MyWorkDirectory. To do this, select the value at the right and type
the new value.

Now go back to the MATLAB Command Window and confirm that the
DefaultFilePath property has changed as expected.

h.DefaultFilePath

MATLAB displays:

ans =

C:\MyWorkDirectory

Note If you modify properties at the MATLAB command line, refresh the
Property Inspector window to see the change reflected there. Refresh the
Property Inspector window by reinvoking inspect on the object.

Using the Property Inspector on Enumerated Values
A list button next to a property value indicates the property accepts
enumerated values. Click anywhere in the field on the right to see the
values. The following figure displays four enumerated values for the Cursor
property. The current value xlDefault is displayed in the field next to the
property name.

10-23

10 MATLAB® COM Client Support

To change the value, use the list button to display the options for that
property, and then click the desired value.

Custom Properties
You can add your own custom properties to an instance of a control using the
addproperty function. The syntax h.addproperty('propertyName') creates
a custom property for control h.

This example creates the mwsamp2 control, adds a new property called
Position to it, and assigns the value [200 120] to that property:

h = actxcontrol('mwsamp.mwsampctrl.2', [200 120 200 200]);
h.addproperty('Position');
h.Position = [200 120];

Use the get function to list all properties of control h.

h.get

You see the new Position property has been added.

ans =
Label: 'Label'

Radius: 20
Position: [200 120]

Type:

h.Position

MATLAB displays:

ans =
200 120

To remove custom properties from a control, use the deleteproperty function.
The syntax h.deleteproperty('propertyName') deletes propertyName from
h. For example, to delete the Position property that you just created and
show that it no longer exists, type:

h.deleteproperty('Position');

10-24

Use Object Properties

h.get

MATLAB displays:

ans =
Label: 'Label'

Radius: 20

Properties That Take Arguments
Some COM objects have properties that accept input arguments. Internally,
MATLAB handles these properties as methods, which means you need to use
the invoke function (not get) to view the property.

To explain how this works, look at a spreadsheet property that takes input
arguments. This example is taken from “Using a MATLAB Application as an
Automation Client” on page 10-76.

• “An Example” on page 10-25

• “Exploring the Object” on page 10-26

• “Exploring Values” on page 10-26

• “Setting Values” on page 10-27

• “Completing the Example” on page 10-28

An Example
The Excel Activesheet interface is an object that takes input arguments.
This interface has a property called Range. To specify Range, pass in range
coordinates.

To begin, create the Worksheet object ws:

e = actxserver('Excel.Application');
e.Workbooks.Add;
ws = e.Activesheet;

The ws object is an interface:

ws =

10-25

10 MATLAB® COM Client Support

Interface.Microsoft_Excel_11.0_Object_Library._Worksheet

Exploring the Object
You can explore the ws object using the get and invoke functions. (When you
type the following commands, MATLAB displays long lists of properties and
methods.) When you type ws.get, the property Range is not in the list. You
must use the invoke function to find Range.

ws.invoke

MATLAB displays (in part):

:
Range = handle Range(handle, Variant, Variant(Optional))

:

Exploring Values
The get function also displays the value of a property. For example, one of
the properties listed by get is StandardHeight. To see its value, type:

ws.get('StandardHeight')

MATLAB displays:

ans =
13.2000

But, if you use this command on Range:

ws.get('Range');

MATLAB displays:

Invoke Error: Incorrect number of arguments

Consulting Microsoft reference documentation, you find Range requires
arguments A1:B2, which specify a rectangular region of the spreadsheet.

10-26

Use Object Properties

If you type:

wsRange = ws.get('Range', 'A1:B2')

MATLAB shows that wsRange is an interface:

wsRange =
Interface.Microsoft_Excel_11.0_Object_Library.Range

You find the properties by typing:

wsRange.get

From the lengthy list MATLAB displays, look at the Value property:

:
Value: {2x2 cell}

:

To see the current value, type:

wsRange.Value

MATLAB displays:

ans =
[NaN] [NaN]
[NaN] [NaN]

Setting Values
To copy a MATLAB array A into the wsRange object, type:

A = [1 2; 3 4];
wsRange.Value = A;
wsRange.Value

MATLAB displays:

ans =
[1] [2]
[3] [4]

10-27

10 MATLAB® COM Client Support

Completing the Example
When you are finished with this example, type:

e.Workbook.Close;

The Excel Close method expects a Yes/No response about saving the
workbook. To terminate and remove the server object, type:

e.Quit;
e.delete;

10-28

Use Methods

Use Methods

In this section...

“About Methods” on page 10-29

“Getting Method Information” on page 10-30

“Invoking Methods on an Object” on page 10-34

“Exceptions to Using Implicit Syntax” on page 10-36

“Specifying Enumerated Parameters” on page 10-37

“Optional Input Arguments” on page 10-38

“Returning Multiple Output Arguments” on page 10-39

“Argument Callouts in Error Messages” on page 10-40

About Methods
You execute, or invoke, COM functions or methods belonging to COM objects.
This topic explains how to determine what methods are available for an object
and how to invoke them. If you only want to view your object’s methods, see
“Exploring Methods” on page 10-14 for basic information.

Method names are case sensitive. You cannot abbreviate them.

Use the following MATLAB functions to work with the methods of a COM
object.

Function Description

invoke Invoke a method or display a list of methods and
types

ismethod Determine if an item is a method of a COM object

methods List all method names for the control or server

methodsview Graphic display of information on all methods and
types

10-29

10 MATLAB® COM Client Support

Getting Method Information
You can see what methods are supported by a COM object using the
methodsview, methods, or invoke functions. Each function presents specific
information, as described in the following table.

Function Output

invoke Cell array of function names and
signatures

methods Cell array of function names only, sorted
alphabetically, with uppercase names
listed first

methods with -full qualifier Cell array of function names and
signatures, sorted alphabetically

methodsview Graphical display of function names and
signatures

In this topic, you can use the built-in MATLAB control mwsamp to try out these
functions. To create the control object sampObj, type:

sampObj = actxcontrol('mwsamp.mwsampctrl.1', [0 0 500 500]);

The control opens a figure window and displays a circle and text label.

Using invoke
The invoke function returns a cell array containing a list of all methods
supported by the object, along with the signatures for these methods. This list
is not sorted alphabetically.

For example, type:

sampObj.invoke

MATLAB displays:

Beep = void Beep(handle)
Redraw = void Redraw(handle)
GetVariantArray = Variant GetVariantArray(handle)
GetIDispatch = handle GetIDispatch(handle)

10-30

Use Methods

GetBSTR = string GetBSTR(handle)
GetI4Array = Variant GetI4Array(handle)
GetBSTRArray = Variant GetBSTRArray(handle)
GetI4 = int32 GetI4(handle)
GetR8 = double GetR8(handle)
GetR8Array = Variant GetR8Array(handle)
FireClickEvent = void FireClickEvent(handle)
GetVariantVector = Variant GetVariantVector(handle)
GetR8Vector = Variant GetR8Vector(handle)
GetI4Vector = Variant GetI4Vector(handle)
SetBSTRArray = Variant SetBSTRArray(handle, Variant)
SetI4 = int32 SetI4(handle, int32)
SetI4Vector = Variant SetI4Vector(handle, Variant)
SetI4Array = Variant SetI4Array(handle, Variant)
SetR8 = double SetR8(handle, double)
SetR8Vector = Variant SetR8Vector(handle, Variant)
SetR8Array = Variant SetR8Array(handle, Variant)
SetBSTR = string SetBSTR(handle, string)
AboutBox = void AboutBox(handle)

Using methods
The methods function returns the names of all methods for the object,
including MATLAB COM functions that you can use on the object. There is no
information about how to call the method. This list is sorted alphabetically;
however, method names with initial caps are listed before methods with
lowercase names.

For example, type:

sampObj.methods

MATLAB displays:

Methods for class COM.mwsamp_mwsampctrl_1:

AboutBox GetVariantVector deleteproperty
Beep Redraw events
FireClickEvent SetBSTR get
GetBSTR SetBSTRArray interfaces

10-31

10 MATLAB® COM Client Support

GetBSTRArray SetI4 invoke
GetI4 SetI4Array load
GetI4Array SetI4Vector move
GetI4Vector SetR8 propedit
GetIDispatch SetR8Array release
GetR8 SetR8Vector save
GetR8Array addproperty send
GetR8Vector constructorargs set
GetVariantArray delete

Examples of MATLAB COM functions are addproperty and set. Although
the list is sorted alphabetically, uppercase function names are listed first. For
example, Redraw appears before get.

Using methods with -full
When you include the -full qualifier in the methods function, MATLAB also
specifies the input and output arguments for each method. For an overloaded
method, the returned array includes a description of each of its signatures.

Type:

sampObj.methods('-full')

MATLAB displays:

Methods for class COM.mwsamp_mwsampctrl_1:

AboutBox(handle)
Beep(handle)
FireClickEvent(handle)
string GetBSTR(handle)
Variant GetBSTRArray(handle)
int32 GetI4(handle)
Variant GetI4Array(handle)
Variant GetI4Vector(handle)
handle GetIDispatch(handle)
double GetR8(handle)
Variant GetR8Array(handle)
Variant GetR8Vector(handle)
Variant GetVariantArray(handle)

10-32

Use Methods

Variant GetVariantVector(handle)
Redraw(handle)
string SetBSTR(handle, string)
Variant SetBSTRArray(handle, Variant)
int32 SetI4(handle, int32)
Variant SetI4Array(handle, Variant)
Variant SetI4Vector(handle, Variant)
double SetR8(handle, double)
Variant SetR8Array(handle, Variant)
Variant SetR8Vector(handle, Variant)
addproperty(handle, string)
MATLAB array constructorargs(handle)
delete(handle, MATLAB array)
deleteproperty(handle, string)
MATLAB array events(handle, MATLAB array)
MATLAB array get(handle)
MATLAB array get(handle, MATLAB array, MATLAB array)
MATLAB array get(handle vector, MATLAB array, MATLAB array)
MATLAB array interfaces(handle)
MATLAB array invoke(handle)
MATLAB array invoke(handle, string, MATLAB array)
load(handle, string)
MATLAB array move(handle, MATLAB array)
MATLAB array move(handle)
propedit(handle)
release(handle, MATLAB array)
save(handle, string)
MATLAB array send(handle)
MATLAB array set(handle vector, MATLAB array, MATLAB array)
MATLAB array set(handle, MATLAB array, MATLAB array)
MATLAB array set(handle)

In the mwsamp control, get is an overloaded function, and MATLAB displays
each of its signatures.

Using methodsview
The methodsview function opens a new window with an easy-to-read display
of all methods supported by the object. It displays the same information as
the handle.methods('-full') command.

10-33

10 MATLAB® COM Client Support

For example, type:

sampObj.methodsview

MATLAB opens a window showing (in part):

Invoking Methods on an Object
This section covers the following topics:

• “Calling Syntax” on page 10-34

• “Input and Output Arguments” on page 10-35

• “Example Using mwsamp” on page 10-35

Calling Syntax
To invoke a method on a COM object, use dot syntax, also called dot notation.
This is a simpler syntax that doesn’t require an explicit function call. For
situations where you cannot use this syntax, see “Exceptions to Using Implicit
Syntax” on page 10-36.

10-34

Use Methods

The format of a dot syntax statement is:

outputvalue = object.methodname('arg1', 'arg2', ...);

Specify the object name, the dot (.), and the name of the function or method.
Enclose any input arguments in parentheses after the function name. Specify
output arguments to the left of the equal sign.

Dot syntax is a special case of calling by method name. An alternative syntax
for calling by method name is:

outputvalue = methodname(object, 'arg1', 'arg2', ...);

MATLAB also supports the following explicit syntax statements:

outputvalue = invoke(object, 'methodname', 'arg1', 'arg2', ...);
outputvalue = object.invoke('methodname', 'arg1', 'arg2', ...);

Input and Output Arguments
The methodsview output window and the methods -full command show
what data types to use for input and output arguments. For information
about reading a signature statement and using input and output arguments,
see “Handling COM Data in MATLAB Software” on page 10-65.

Example Using mwsamp
The following example creates three circles in a MATLAB figure window. It
shows different commands you can use to change the circles.

To create the COM objects, type:

h1 = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200]);
h2 = actxcontrol('mwsamp.mwsampctrl.2', [200 200 200 200]);
h3 = actxcontrol('mwsamp.mwsampctrl.2', [400 0 200 200]);

You can explicitly change the size of and redraw a circle using the commands:

h1.set('Radius', 100);
invoke(h1, 'Redraw')

You can implicitly change the size using:

10-35

10 MATLAB® COM Client Support

h2.Radius = 50;
h3.Radius = 25;

To redraw the circles using method name syntax, type:

Redraw(h2)
h3.Redraw

Close the figure window.

Exceptions to Using Implicit Syntax
You cannot use dot syntax and must explicitly call the get, set, and invoke
functions under the following conditions:

• “Accessing Nonpublic Properties and Methods” on page 10-36

• “Accessing Properties That Take Arguments” on page 10-37

• “Operating on a Vector of Objects” on page 10-37

Accessing Nonpublic Properties and Methods
If the property or method you want to access is not a public property or
method of the object class, or if it is not in the type library for the control or
server, you must call get, set, or invoke explicitly.

If you use a syntax statement of the following format for a nonpublic property
aProperty:

x = handle.aProperty

MATLAB displays a message such as:

No appropriate method or public field aProperty for class
COM.aClass.application.

Instead, you must use the get function explicitly:

x = handle.get('aProperty')

To find public properties and methods on COM object h, type:

10-36

Use Methods

publicproperties = h.get
publicmethods = h.invoke

Accessing Properties That Take Arguments
Some COM objects have properties that accept input arguments. MATLAB
treats these properties like methods. For an example of this feature, see
“Properties That Take Arguments” on page 10-25.

To get or set the value of such a property, you must make an explicit call to
the get or set function, as shown in the following example. In this example,
A1 and B2 are arguments that specify which Range interface to return on
the get operation:

eActivesheetRange = e.Activesheet.get('Range', 'A1', 'B2');

Operating on a Vector of Objects
If you operate on a vector of objects you must call get or set explicitly to
access properties. For an example, see “Working with Multiple Objects” on
page 10-20. This applies only to the get and set functions. You cannot invoke
a method on multiple COM objects, even if you call the invoke function
explicitly.

Specifying Enumerated Parameters
Enumeration is a way of assigning a descriptive name to a symbolic value.

For example, the input to a function is the atomic number of an element.
It is easier to remember an element name than the atomic number. Using
enumeration, you can pass the word 'arsenic' in place of the value 33.

MATLAB supports enumeration for parameters passed to methods under
the condition that the type library in use reports the parameter as ENUM,
and only as ENUM.

Note MATLAB does not support enumeration for any parameter that the
type library reports as both ENUM and Optional.

10-37

10 MATLAB® COM Client Support

In this example, the Location method accepts the enumerated value
'xlLocationAsObject'.

Create a Microsoft Excel Chart object:

e = actxserver('Excel.Application');

% Insert a new workbook.
Workbook = e.Workbooks.Add;
e.Visible = 1;
Sheets = e.ActiveWorkBook.Sheets;

% Get a handle to the active sheet.
Activesheet = e.Activesheet;

%Add a Chart
Charts = Workbook.Charts;
Chart = Charts.Add;

To see what type of chart you can create, type:

Chart.inspect

Scroll through the Property Inspector window to find ChartType. Click the
drop-down arrow to see all possible ChartType values. This is an enumerated
list. Close the property inspector.

To programmatically set the ChartType, type:

% Set chart type to be a line plot.
Chart.ChartType = 'xlXYScatterLines'
C1 = Chart.Location('xlLocationAsObject', 'Sheet1');

Close the Excel spreadsheet.

Optional Input Arguments
When calling a method that takes optional input arguments, you can skip any
optional argument by specifying an empty array ([]) in its place. The syntax
for calling a method with second argument arg2 not specified is:

10-38

Use Methods

handle.methodname(arg1, [], arg3);

The following example uses the Add method to add new sheets to an Excel
workbook. The Add method has the following optional input arguments:

• Before— The sheet before which to add the new sheet

• After— The sheet after which to add the new sheet

• Count — The total number of sheets to add

• Type — The type of sheet to add

The following code creates a workbook with the default number of worksheets,
and inserts an additional sheet after Sheet 1. To do this, call Add with the
second argument, After. You omit the first argument, Before, by using [] in
its place, as shown in the last line of the example:

% Open an Excel Server.
e = actxserver('Excel.Application');

% Insert a new workbook.
e.Workbooks.Add;
e.Visible = 1;

% Get the Active Workbook with three sheets.
eSheets = e.ActiveWorkbook.Sheets;

% Add a new sheet after eSheet1.
eSheet1 = eSheets.Item(1);
eNewSheet = eSheets.Add([], eSheet1);

Close the Excel spreadsheet.

Returning Multiple Output Arguments
If you know that a server function supports multiple outputs, you can return
any or all of those outputs to a MATLAB client.

The following syntax shows a server function functionname called by the
MATLAB client. retval is the function’s first output argument, or return
value. The other output arguments are out1, out2,

10-39

10 MATLAB® COM Client Support

[retval out1 out2 ...] = handle.functionname(in1, in2, ...);

MATLAB makes use of the pass-by-reference capabilities in COM to
implement this feature. Note that pass-by-reference is a COM feature;
MATLAB does not support pass-by-reference.

Argument Callouts in Error Messages
When a MATLAB client sends a command with an invalid argument to a
COM server application, the server sends back an error message, similar to
the following, identifying the invalid argument.

??? Error: Type mismatch, argument 3.

If you do not use the dot syntax format, be careful interpreting the argument
number in this type of message.

For example, using dot syntax, if you type:

handle.PutFullMatrix('a', 'base', 7, [5 8]);

MATLAB displays:

??? Error: Type mismatch, argument 3.

In this case, the argument, 7, is invalid because PutFullMatrix expects the
third argument to be an array data type, not a scalar. In this example, the
error message identifies 7 as argument 3.

However, if you use the syntax:

PutFullMatrix(handle, 'a', 'base', 7, [5 8]);

MATLAB displays:

??? Error: Type mismatch, argument 3.

In this call to the PutFullMatrix function, 7 is argument four. However,
the COM server does not receive the first argument. The handle argument
merely identifies the server. It does not get passed to the server. This means
the server sees 'a' as the first argument, and the invalid argument, 7, as
the third.

10-40

Use Methods

If you use the syntax:

invoke(handle, 'PutFullMatrix', 'a', 'base', 7, [5 8]);

MATLAB again displays:

??? Error: Type mismatch, argument 3.

As in the previous example, MATLAB uses the handle argument to identify
the server. The 'PutFullMatrix' argument is also only used by MATLAB.
While the invalid argument is the fifth argument in your MATLAB command,
the server still identifies it as argument 3, because the first two arguments
are not seen by the server.

10-41

10 MATLAB® COM Client Support

Use Events

In this section...

“About Events” on page 10-42

“Functions for Working with Events” on page 10-43

“Examples of Event Handlers” on page 10-43

“Responding to Events — an Overview” on page 10-44

“Responding to Events — Examples” on page 10-46

“Writing Event Handlers” on page 10-54

“Sample Event Handlers” on page 10-57

“Writing Event Handlers as MATLAB Local Functions” on page 10-58

About Events
An event is typically a user-initiated action that takes place in a server
application, which often requires a reaction from the client. For example, a
user clicking the mouse at a particular location in a server interface window
might require the client take some action in response. When an event is
fired, the server communicates this occurrence to the client. If the client is
listening for this particular type of event, it responds by executing a routine
called an event handler.

The MATLAB COM client can subscribe to and handle the events fired by a
Microsoft ActiveX control or a COM server. Select the events you want the
client to listen to by registering each event you want active with the event
handler to be used in responding to the event. When a registered event takes
place, the control or server notifies the client, which responds by executing
the appropriate event handler routine. You can write event handlers as
MATLAB functions.

Note MATLAB does not support asynchronous events.

10-42

Use Events

Note MATLAB does not support interface events from a Custom server.

Functions for Working with Events
Use the MATLAB functions in the following table to register and unregister
events, to list all events, or to list just registered events for a control or server.

Function Description

actxcontrol Create a COM control and optionally register
those events you want the client to listen to

eventlisteners Return a list of events attached to listeners

events List all events, both registered and unregistered,
a control or server can generate

isevent Determine if an item is an event of a COM object

registerevent Register an event handler with a control or server
event

unregisterallevents Unregister all events for a control or server

unregisterevent Unregister an event handler with a control or
server event

Event names and event handler names are not case sensitive. You cannot
abbreviate them.

Examples of Event Handlers
The following examples use event handlers:

• “Add Grid ActiveX Control in a Figure” on page 9-17

• “Read Excel Spreadsheet Data” on page 9-25

10-43

10 MATLAB® COM Client Support

Responding to Events — an Overview
This section describes the basic steps to handle events fired by a COM control
or server.

• “Identifying All Events” on page 10-44

• “Registering Those Events You Want to Respond To” on page 10-44

• “Identifying Registered Events” on page 10-45

• “Responding to Events As They Occur” on page 10-45

• “Unregistering Events You No Longer Want to Listen To” on page 10-45

Identifying All Events
Use the events function to list all events the control or server can respond to.
This function returns a structure array, where each field of the structure is the
name of an event handler, and the value of that field contains the signature
for the handler routine. To invoke events on an object with handle h, type:

S = h.events

Registering Those Events You Want to Respond To
Use the registerevent function to register those server events you want the
client to respond to. You can register events as follows:

• If you have one function to handle all server events, register this common
event handler using the syntax:

h.registerevent('handler');

• If you have a separate event handler function for different events, use
the syntax:

h.registerevent({'event1' 'handler1'; 'event2' 'handler2';
...});

For ActiveX controls, you can register events at the time you create an
instance of the control using the actxcontrol function.

• To register a common event handler function to respond to all events, use:

10-44

Use Events

h = actxcontrol('progid', position, figure, 'handler');

• To register a separate function to handle each type of event, use:

h = actxcontrol('progid', position, figure, ...
{'event1' 'handler1'; 'event2' 'handler2'; ...});

The MATLAB client responds only to events you have registered. If you
register the same event name to the same callback handler multiple times,
MATLAB executes the event only once.

Identifying Registered Events
The eventlisteners function lists only currently registered events. This
function returns a cell array, with each row representing a registered event
and the name of its event handler. For example, to invoke eventlisteners
on an object with handle h, type:

C = h.eventlisteners

Responding to Events As They Occur
Whenever a control or server fires an event that the client is listening for, the
client responds to the event by invoking one or more event handlers that have
been registered for that event. You can implement these routines as MATLAB
functions. Read more about event handlers in the section on “Writing Event
Handlers” on page 10-54.

Unregistering Events You No Longer Want to Listen To
If you have registered events that you now want the client to ignore, you
can unregister them at any time using the functions unregisterevent and
unregisterallevents as follows:

• For a server with handle h, to unregister all events registered with a
common event handling function handler, use:

h.unregisterevent('handler');

• To unregister individual events eventN, each registered with its own event
handling function handlerN, use:

10-45

10 MATLAB® COM Client Support

h.unregisterevent({'event1' 'handler1'; 'eventN' 'handlerN'});

• To unregister all events from the server regardless of which event handling
function they are registered with, use:

h.unregisterallevents;

Responding to Events — Examples
The following examples show you how to respond to events from different
COM objects:

• “Responding to Events from an ActiveX Control” on page 10-46

• “Responding to Events from an Automation Server” on page 10-50

• “Responding to Interface Events from an Automation Server” on page 10-53

Responding to Events from an ActiveX Control
This example describes how to handle events fired by an ActiveX control. It
uses a control called mwsamp2 that ships with MATLAB.

Tasks described in this section are:

• “Creating Event Handler Routines” on page 10-46

• “Creating a Control and Registering Events” on page 10-47

• “Listing Control Events” on page 10-47

• “Responding to Control Events” on page 10-48

• “Unregistering Control Events” on page 10-49

• “Using a Common Event Handling Routine” on page 10-50

Creating Event Handler Routines. You can view the event handler code for
the mwsamp2 control in the section “Sample Event Handlers” on page 10-57.
Create the event handler files myclick.m, my2click.m, and mymoused.m and
save them on your path, for example, c:\work.

10-46

Use Events

Creating a Control and Registering Events. The actxcontrol function
not only creates the control object, but you can use it to register specific
events, as well. The code shown here registers two events (Click and
MouseDown) and two respective handler routines (myclick and mymoused) with
the mwsamp2 control:

f = figure('position', [100 200 200 200]);
obj = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f, ...

{'Click' 'myclick'; 'MouseDown' 'mymoused'});

If, at some later time, you want to register additional events, use the
registerevent function. For example:

obj.registerevent({'DblClick' 'my2click'});

Unregister the DblClick event before continuing with the example:

obj.unregisterevent({'DblClick' 'my2click'});

Listing Control Events. At this point, only the Click and MouseDown events
should be registered. To list all events, whether registered or not, type:

objEvents = obj.events

MATLAB displays:

objEvents =
Click: 'void Click()'

DblClick: 'void DblClick()'
MouseDown: 'void MouseDown(int16 Button, int16 Shift,

Variant x, Variant y)'
Event_Args: [1x101 char]

This function returns a structure array, where each field of the structure
is the name of an event handler and the value of that field contains the
signature for the handler routine. For example:

objEvents.Event_Args

MATLAB displays:

ans =

10-47

10 MATLAB® COM Client Support

void Event_Args(int16 typeshort, int32 typelong,
double typedouble, string typestring, bool typebool)

To list only the currently registered events, use the eventlisteners function:

obj.eventlisteners

MATLAB displays:

ans =
'click' 'myclick'
'mousedown' 'mymoused'

This function returns a cell array, with each row representing a registered
event and the name of its event handler.

Responding to Control Events. When MATLAB creates the mwsamp2
control, it also displays a figure window showing a label and circle at the
center. If you click different positions in this window, you see a report in the
MATLAB Command Window of the X and Y position of the mouse.

Each time you press the mouse button, the MouseDown event fires, calling the
mymoused function. This function prints the position values for that event to
the Command Window. For example:

The X position is:
ans =

[122]
The Y position is:
ans =

[63]

The Click event displays the message:

Single click function

Double-clicking the mouse does nothing different, since the DblClick event
is not registered.

10-48

Use Events

Unregistering Control Events. When you unregister an event, the client
discontinues listening for occurrences of that event. When the event fires, the
client does not respond. If you unregister the MouseDown event, MATLAB no
longer reports the X and Y positions. Type:

obj.unregisterevent({'MouseDown' 'mymoused'});

When you click in the figure window, MATLAB displays:

Single click function

Now, register the DblClick event, using the my2click event handler:

obj.registerevent({'DblClick', 'my2click'});

If you call eventlisteners again:

obj.eventlisteners

MATLAB displays:

ans =
'click' 'myclick'
'dblclick' 'my2click'

When you double-click the mouse button, MATLAB displays:

Single click function
Double click function

An easy way to unregister all events for a control is to use the
unregisterallevents function.

obj.unregisterallevents
obj.eventlisteners

When there are no events registered, eventlisteners returns an empty
cell array:

ans =
{}

10-49

10 MATLAB® COM Client Support

Clicking the mouse in the control window now does nothing since there are
no active events.

Using a Common Event Handling Routine. If you have events that are
registered with a common event handling routine, such as sampev.m used in
the following example, you can use unregisterevent to unregister all of
these events in one operation. This example first registers all events from the
server with a common handling routine sampev.m. MATLAB now handles any
type of event from this server by executing sampev:

obj.registerevent('sampev');

Verify the registration by listing all event listeners for that server:

obj.eventlisteners

MATLAB displays:

ans =
'click' 'sampev'
'dblclick' 'sampev'
'mousedown' 'sampev'

Now unregister all events for the server that use the sampev event handling
routine:

obj.unregisterevent('sampev');
obj.eventlisteners

MATLAB displays:

ans =
{}

Close the figure window.

Responding to Events from an Automation Server
This example shows how to handle events fired by an Automation server. It
creates a server running the Microsoft Internet Explorer program, registers
a common event handler for all events, and then has you fire events by
browsing to Web sites.

10-50

Use Events

Tasks described in this section are:

• “Creating an Event Handler” on page 10-51

• “Creating a Server” on page 10-51

• “Listing Server Events” on page 10-51

• “Registering Server Events” on page 10-52

• “Responding to Server Events” on page 10-52

• “Unregistering Server Events” on page 10-52

• “Closing the Application” on page 10-53

Creating an Event Handler. Register all events with the same handler
routine, serverevents. Create the file serverevents.m, inserting the
following code. Make sure that the file is in your current folder.

function serverevents(varargin)

% Display incoming event name
eventname = varargin{end}

% Display incoming event args
eventargs = varargin{end-1}

Creating a Server. Next, at the MATLAB command prompt, type the
following commands:

% Create a server running Internet Explorer.
browser = actxserver('internetexplorer.application');
% Make the server application visible.
browser.set('Visible', 1);

Listing Server Events. Use the events function to list all events the server
can respond to, and eventlisteners to list the registered events:

browser.events

MATLAB displays event information like:

:

10-51

10 MATLAB® COM Client Support

StatusTextChange = void StatusTextChange(string Text)

ProgressChange = void ProgressChange(int32 Progress,int32 ProgressMax)

CommandStateChange = void CommandStateChange(int32 Command,bool Enable)

:

List the registered events:

browser.eventlisteners

No events are registered at this time, so MATLAB displays:

ans =
{}

Registering Server Events. Now use your event handler serverevents.

browser.registerevent('serverevents');
browser.eventlisteners

MATLAB displays:

ans =
: :

'statustextchange' 'serverevents'
'progresschange' 'serverevents'
'commandstatechange' 'serverevents'

: :

Responding to Server Events. At this point, all events have been
registered. If any event fires, the common handler routine defined in
serverevents.m executes to handle that event. Use the Internet Explorer
software to browse your favorite Web site, or enter the following command
in the MATLAB Command Window:

browser.Navigate2('http://www.mathworks.com');

You should see a long series of events displayed in the Command Window.

Unregistering Server Events. Use the unregisterevent function to
unregister the progresschange and commandstatechange events:

browser.unregisterevent({'progresschange', 'serverevents'; ...

10-52

Use Events

'commandstatechange', 'serverevents'});

To unregister all events for an object, use unregisterallevents. The
following commands unregister all the events that had been registered, and
then registers a single event:

browser.unregisterallevents;
browser.registerevent({'TitleChange', 'serverevents'});

If you now use the Web browser, MATLAB only responds to the TitleChange
event.

Closing the Application. Close a server application when you no longer
intend to use it. To unregister all events and close the application, type:

browser.unregisterallevents;
browser.Quit;
browser.delete;

Responding to Interface Events from an Automation Server
This example, demonstrating how to handle a COM interface event, shows
how to set up an event in a Microsoft Excel workbook object and how to
handle its BeforeClose event.

To create the event handler OnBeforeCloseWorkbook, create the file
OnBeforeCloseWorkbook.m, inserting the following code. Make sure that the
file is in your current folder:

% Event handler for Excel workbook BeforeClose event
function OnBeforeCloseWorkbook(varargin)

disp('BeforeClose event occured');

When you run the following commands:

% Create Excel automation server instance
xl = actxserver('Excel.Application');
% Make it visible
xl.Visible = 1;

% Get collection of workbooks and add a new workbook

10-53

10 MATLAB® COM Client Support

hWbks = xl.Workbooks;
hWorkbook = hWbks.Add;

% Register OnClose event
hWorkbook.registerevent({'BeforeClose' @OnBeforeCloseWorkbook});

% Close the workbook. This fires the Close event
% and calls the OnClose handler
hWorkbook.Close

MATLAB displays:

BeforeClose event occured

Writing Event Handlers
This section covers the following topics on writing handler routines to respond
to events fired from a COM object:

• “Overview of Event Handling” on page 10-54

• “Arguments Passed to Event Handlers” on page 10-55

• “Event Structure” on page 10-56

Overview of Event Handling
An event is fired when a control or server wants to notify its client that
something of interest has occurred. For example, many controls trigger an
event when the user clicks somewhere in the interface window of a control.
Create and register your own MATLAB functions to respond to events when
they occur. These functions are event handlers. You can create one handler
function to handle all events or a separate handler for each type of event.

For controls, you can register handler functions either at the time you create
an instance of the control (using actxcontrol), or at any time afterwards
(using registerevent).

Both actxcontrol and registerevent use an event handler argument. The
event handler argument can be either the name of a single callback routine
or a cell array that associates specific events with their respective event
handlers. Strings used in the event handler argument are not case sensitive.

10-54

Use Events

For servers, use registerevent to register those events you want the client
to listen to. For example, to register the Click and DblClick events, use:

h.registerevent({'click' 'myclick'; 'dblclick' 'my2click'});

Use events to list all the events a COM object recognizes. For example, to list
all events for the mwsamp2 control, use:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);

h.events
Click = void Click()
DblClick = void DblClick()
MouseDown = void MouseDown(int16 Button, int16 Shift,

Variant x, Variant y)

Arguments Passed to Event Handlers
When a registered event is triggered, the MATLAB software passes
information from the event to its handler function, as shown in this table.

Arguments Passed by MATLAB Functions

Arg. No. Contents Format

1 Object name MATLAB COM class

2 Event ID double

3 Start of Event Argument
List

As passed by the control

end-2 End of Event Argument
List (Argument N)

As passed by the control

end-1 Event Structure structure

end Event Name char array

When writing an event handler function, use the Event Name argument to
identify the source of the event. Get the arguments passed by the control from

10-55

10 MATLAB® COM Client Support

the Event Argument List (arguments 3 through end-2). All event handlers
must accept a variable number of arguments:

function event (varargin)
if (strcmp(varargin{end}, 'MouseDown')) % Check the event name

x_pos = varargin{5}; % Read 5th Event Argument
y_pos = varargin{6}; % Read 6th Event Argument

end

Note The values passed vary with the particular event and control being
used.

Event Structure
The second to last argument passed by MATLAB is the Event Structure,
which has the fields shown in the following table.

Fields of the Event Structure

Field Name Description Format

Type Event Name char array

Source Control Name MATLAB COM class

EventID Event Identifier double

Event Arg Name 1 Event Arg Value 1 As passed by the control

Event Arg Name 2 Event Arg Value 2 As passed by the control

etc. Event Arg N As passed by the control

For example, when the MouseDown event of the mwsamp2 control is triggered,
MATLAB passes this Event Structure to the registered event handler:

Type: 'MouseDown'
Source: [1x1 COM.mwsamp.mwsampctrl.2]

EventID: -605
Button: 1
Shift: 0

x: 27

10-56

Use Events

y: 24

Sample Event Handlers
Specify a single callback, sampev:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...

gcf, 'sampev')
h =

COM.mwsamp.mwsampctrl.2

Or specify several events using the cell array format:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f, ...
{'Click' 'myclick'; 'DblClick' 'my2click'; ...
'MouseDown' 'mymoused'});

The event handlers, myclick.m, my2click.m, and mymoused.m, are:

function myclick(varargin)
disp('Single click function')

function my2click(varargin)
disp('Double click function')

function mymoused(varargin)
disp('You have reached the mouse down function')
disp('The X position is: ')
double(varargin{5})
disp('The Y position is: ')
double(varargin{6})

Alternatively, you can use the same event handler for all the events you want
to monitor using the cell array pairs. Response time is better than using
the callback style.

For example:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', ...
[0 0 200 200], f, {'Click' 'allevents'; ...

10-57

10 MATLAB® COM Client Support

'DblClick' 'allevents'; 'MouseDown' 'allevents'})

where allevents.m is:

function allevents(varargin)
if (strcmp(varargin{end-1}.Type, 'Click'))

disp ('Single Click Event Fired')
elseif (strcmp(varargin{end-1}.Type, 'DblClick'))

disp ('Double Click Event Fired')
elseif (strcmp(varargin{end-1}.Type, 'MouseDown'))

disp ('Mousedown Event Fired')
end

Writing Event Handlers as MATLAB Local Functions
Instead of maintaining a separate function file for every event handler routine
you write, you can consolidate routines into a single file using local functions.

This example shows three event handler routines, myclick, my2click, and
mymoused, implemented as local functions in the file mycallbacks.m. The call
to str2func converts the input string to a function handle:

function a = mycallbacks(str)
a = str2func(str);

function myclick(varargin)
disp('Single click function')

function my2click(varargin)
disp('Double click function')

function mymoused(varargin)
disp('You have reached the mouse down function')
disp('The X position is: ')
double(varargin{5})
disp('The Y position is: ')
double(varargin{6})

To register one of these events, call mycallbacks, passing the name of the
event handler:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...

10-58

Use Events

gcf, 'sampev')
h.registerevent({'Click', mycallbacks('myclick')});

10-59

10 MATLAB® COM Client Support

Getting Interfaces to COM Object

In this section...

“IUnknown and IDispatch Interfaces” on page 10-60

“Custom Interfaces” on page 10-61

IUnknown and IDispatch Interfaces
When you invoke the actxserver or actxcontrol functions, the MATLAB
software creates the server and returns a handle to the server interface as
a means of accessing its properties and methods. The software uses the
following process to determine which handle to return:

1 First get a handle to the IUnknown interface from the component. All COM
components are required to implement this interface.

2 Attempt to get the IDispatch interface. If IDispatch is implemented, return
a handle to this interface. If IDispatch is not implemented, return the
handle to IUnknown.

Additional Interfaces
Components often provide additional interfaces, based on IDispatch, that
are implemented as properties. Like any other property, you obtain these
interfaces using the MATLAB get function.

For example, a Microsoft Excel component contains numerous interfaces. To
list these interfaces, along with Excel properties, type:

h = actxserver('Excel.Application');
h.get

MATLAB displays information like:

Application: [1x1 Interface.Microsoft_Excel_9.0_
Object_Library._Application]

Creator: 'xlCreatorCode'
Parent: [1x1 Interface.Microsoft_Excel_9.0_

Object_Library._Application]

10-60

Getting Interfaces to COM Object

ActiveCell: []
ActiveChart: [1x50 char]

.

.

To see if Workbooks is an interface, type:

w = h.Workbooks

MATLAB displays:

w =
Interface.Microsoft_Excel_9.0_Object_Library.Workbooks

The information displayed depends on the version of the Excel software you
have on your system.

Custom Interfaces
The MATLAB COM Interface supports custom interfaces for the following
client/server configurations:

• “MATLAB Client and In-Process Server” on page 9-33

• “MATLAB Client and Out-of-Process Server” on page 9-34

Limitations to custom interface support are:

• Custom interfaces are not supported on a 64-bit version of MATLAB.

• You cannot invoke functions with optional parameters.

Once you have created a server, you can query the server component to see
if any custom interfaces are implemented using the interfaces function.
interfaces returns the names in a cell array of strings.

For example, if you have a component with the ProgID mytestenv.calculator,
you can see its custom interfaces using the commands:

h = actxserver('mytestenv.calculator');
customlist = h.interfaces

10-61

10 MATLAB® COM Client Support

MATLAB displays the interfaces, which might be:

customlist =
ICalc1
ICalc2
ICalc3

To get the handle to a particular interface, use the invoke function

c1 = h.invoke('ICalc1')
c1 =

Interface.Calc_1.0_Type_Library.ICalc_Interface

Use this handle c1 to access the properties and methods of the object through
this custom interface ICalc1.

For example, to list the properties, use:

c1.get
background: 'Blue'

height: 10
width: 0

To list the methods, use:

c1.invoke
Add = double Add(handle, double, double)
Divide = double Divide(handle, double, double)
Multiply = double Multiply(handle, double, double)
Subtract = double Subtract(handle, double, double)

To add and multiply numbers using the Add and Multiply methods of the
object, use:

sum = c1.Add(4, 7)
sum =

11

prod = c1.Multiply(4, 7)
prod =

28

10-62

Save COM Objects

Save COM Objects

In this section...

“Functions for Saving and Restoring COM Objects” on page 10-63

“Releasing COM Interfaces and Objects” on page 10-64

Functions for Saving and Restoring COM Objects
Use these MATLAB functions to save and restore the state of a COM control
object.

Function Description

load Load and initialize a COM control object from a file

save Write and serialize a COM control object to a file

Save, or serialize, the current state of a COM control to a file using the save
function. Serialization is the process of saving an object onto a storage
medium (such as a file or a memory buffer) or transmitting it across a network
connection link in binary form.

The following example creates an mwsamp2 control and saves its original state
to the file mwsample:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.save('mwsample')

Now, alter the figure by changing its label and the radius of the circle:

h.Label = 'Circle';
h.Radius = 50;
h.Redraw;

Using the load function, you can restore the control to its original state:

h.load('mwsample');

To verify the results, type:

10-63

10 MATLAB® COM Client Support

h.get

MATLAB displays:

ans =
Label: 'Label'

Radius: 20

Note MATLAB supports the COM save and load functions for controls only.

Releasing COM Interfaces and Objects
Use these MATLAB functions to release or delete a COM object or interface.

Function Description

delete Delete a COM object or interface

release Release a COM interface

When you no longer need an interface, use the release function to release
the interface and reclaim the memory used by it. When you no longer need
a control or server, use the delete function to delete it. Alternatively, you
can use the delete function to both release all interfaces for the object and
delete the server or control.

Note In versions of MATLAB earlier than 6.5, failure to explicitly release
interface handles or delete the control or server often results in a memory
leak. This is true even if the variable representing the interface or COM object
has been reassigned. In MATLAB version 6.5 and later, the control or server,
along with all interfaces to it, is destroyed on reassignment of the variable or
when the variable representing a COM object or interface goes out of scope.

When you delete or close a figure window containing a control, MATLAB
automatically releases all interfaces for the control. MATLAB also
automatically releases all handles for an Automation server when you exit
the program.

10-64

Handling COM Data in MATLAB® Software

Handling COM Data in MATLAB Software

In this section...

“Passing Data to COM Objects” on page 10-65

“Handling Data from COM Objects” on page 10-67

“Unsupported Types” on page 10-68

“Passing MATLAB Data to ActiveX Objects” on page 10-69

“Passing MATLAB SAFEARRAY to COM Object” on page 10-69

“Reading SAFEARRAY from COM Objects in MATLAB Applications” on
page 10-71

“Displaying MATLAB Syntax for COM Objects” on page 10-72

Passing Data to COM Objects
When you use a COM object in a MATLAB command, the MATLAB types you
pass in the call are converted to types native to the COM object. MATLAB
performs this conversion on each argument that is passed. This section
describes the conversion.

MATLAB arguments are converted by MATLAB into types that best represent
the data to the COM object. The following table shows all the MATLAB base
types for passed arguments and the COM types defined for input arguments.
Each row shows a MATLAB type followed by the possible COM argument
matches. For a description of COM variant types, see the table in “Handling
Data from COM Objects” on page 10-67.

10-65

10 MATLAB® COM Client Support

MATLAB Argument Closest COM Type Allowed Types

handle VT_DISPATCH
VT_UNKNOWN

VT_DISPATCH
VT_UNKNOWN

string VT_BSTR VT_LPWSTR
VT_LPSTR
VT_BSTR
VT_FILETIME
VT_ERROR
VT_DECIMAL
VT_CLSID
VT_DATE

int16 VT_I2 VT_I2

uint16 VT_UI2 VT_UI2

int32 VT_I4 VT_I4
VT_INT

uint32 VT_UI4 VT_UI4
VT_UINT

int64 VT_I8 VT_I8

uint64 VT_UI8 VT_UI8

single VT_R4 VT_R4

double VT_R8 VT_R8
VT_CY

logical VT_BOOL VT_BOOL

char VT_I1 VT_I1
VT_UI1

Variant Data
variant is any data type except a structure or a sparse array. (For more
information, see “Fundamental MATLAB Classes”.)

When used as an input argument, MATLAB treats variant and
variant(pointer) the same way.

10-66

Handling COM Data in MATLAB® Software

MATLAB Argument Closest COM Type Allowed Types

variant VT_VARIANT VT_VARIANT
VT_USERDEFINED
VT_ARRAY

variant(pointer) VT_VARIANT VT_VARIANT | VT_BYREF

SAFEARRAY Data
When a COM method identifies a SAFEARRAY or SAFEARRAY(pointer), the
MATLAB equivalent is a matrix.

MATLAB Argument Closest COM Type Allowed Types

SAFEARRAY VT_SAFEARRAY VT_SAFEARRAY

SAFEARRAY(pointer) VT_SAFEARRAY VT_SAFEARRAY |
VT_BYREF

Handling Data from COM Objects
Data returned from a COM object is often incompatible with MATLAB types.
When this occurs, MATLAB converts the returned value to a data type native
to the MATLAB language. This section describes the conversion performed on
the various types that can be returned from COM objects.

The following table shows how MATLAB converts data from a COM object
into MATLAB variables.

COM Variant Type Description MATLAB
Representation

VT_DISPATCH
VT_UNKNOWN

IDispatch *
IUnknown *

handle

VT_LPWSTR
VT_LPSTR
VT_BSTR
VT_FILETIME
VT_ERROR
VT_DECIMAL

wide null terminated
string
null terminated string
OLE Automation string
FILETIME
SCODE

string

10-67

10 MATLAB® COM Client Support

COM Variant Type Description MATLAB
Representation

VT_CLSID
VT_DATE

16-byte fixed point
Class ID
date

VT_INT
VT_UINT
VT_I2
VT_UI2
VT_I4
VT_UI4
VT_R4
VT_R8
VT_CY

signed machine int
unsigned machine
int
2 byte signed int
unsigned short
4 byte signed int
unsigned long
4 byte real
8 byte real
currency

double

VT_I8 signed int64 int64

VT_UI8 unsigned int64 uint64

VT_BOOL logical

VT_I1
VT_UI1

signed char
unsigned char

char

VT_VARIANT
VT_USERDEFINED
VT_ARRAY

VARIANT *
user-defined type
SAFEARRAY*

variant

VT_VARIANT | VT_BYREF VARIANT *
void* for local use

variant(pointer)

VT_SAFEARRAY use VT_ARRAY in
VARIANT

SAFEARRAY

VT_SAFEARRAY |
VT_BYREF

SAFEARRAY(pointer)

Unsupported Types
MATLAB does not support the following COM interface types and displays
the warning ActiveX - unsupported VARIANT type encountered.

10-68

Handling COM Data in MATLAB® Software

• Structure

• Sparse array

• Multidimensional SAFEARRAYs (greater than two dimensions)

• Write-only properties

Passing MATLAB Data to ActiveX Objects
The tables also show the mapping of MATLAB types to COM types that you
must use to pass data from MATLAB to an Microsoft ActiveX object. For all
other types, MATLAB displays the warning ActiveX - invalid argument
type or value.

Passing MATLAB SAFEARRAY to COM Object
The SAFEARRAY data type is a standard way to pass arrays between COM
objects. This section explains how MATLAB passes SAFEARRAY data to a
COM object.

• “Default Behavior in MATLAB Software” on page 10-69

• “Examples” on page 10-69

• “How to Pass a Single-Dimension SAFEARRAY” on page 10-71

• “Passing SAFEARRAY By Reference” on page 10-71

Default Behavior in MATLAB Software
MATLAB represents an m-by-n matrix as a two-dimensional SAFEARRAY,
where the first dimension has m elements and the second dimension has n
elements. MATLAB passes the SAFEARRAY by value.

Examples
The following examples use a COM object that expects a SAFEARRAY input
parameter.

When MATLAB passes a 1-by-3 array :

B = [2 3 4]
B =

10-69

10 MATLAB® COM Client Support

2 3 4

the object reads:

No. of dimensions: 2
Dim: 1, No. of elements: 1
Dim: 2, No. of elements: 3

Elements:
2.0
3.0
4.0

When MATLAB passes a 3-by-1 array:

C = [1;2;3]
C =

1
2
3

the object reads:

No. of dimensions: 2
Dim: 1, No. of elements: 3
Dim: 2, No. of elements: 1
Elements:

1.0
2.0
3.0

When MATLAB passes a 2-by-4 array:

D = [2 3 4 5;5 6 7 8]

D =
2 3 4 5
5 6 7 8

the object reads:

No. of dimensions: 2

10-70

Handling COM Data in MATLAB® Software

Dim: 1, No. of elements: 2
Dim: 2, No. of elements: 4
Elements:

2.0
3.0
4.0
5.0
5.0
6.0
7.0
8.0

How to Pass a Single-Dimension SAFEARRAY
For information about passing arguments as one-dimensional arrays to a
COM object, see the Technical Support solution 1-SKYP9.

Passing SAFEARRAY By Reference
For information about passing arguments by reference to a COM object, see
the Technical Support solution 1-SKYPY.

Reading SAFEARRAY from COM Objects in MATLAB
Applications
This section explains how MATLAB reads SAFEARRAY data from a COM object.

MATLAB reads a one dimensional SAFEARRAY with n elements from a COM
object as a 1-by-n matrix. For example, using methods from the MATLAB
sample control mwsamp, type:

h=actxcontrol('mwsamp.mwsampctrl.1')
a = h.GetI4Vector

MATLAB displays:

a =
1 2 3

10-71

http://www.mathworks.com/support/solutions/data/1-SKYP9.html
http://www.mathworks.com/support/solutions/data/1-SKYPY.html

10 MATLAB® COM Client Support

MATLAB reads a two-dimensional SAFEARRAY with n elements as a 2-by-n
matrix. For example:

a = h.GetR8Array

MATLAB displays:

a =
1 2 3
4 5 6

MATLAB reads a three-dimensional SAFEARRAY with two elements as a
2-by-2-by-2 cell array. For example:

a = h.GetBSTRArray

MATLAB displays:

a(:,:,1) =

'1 1 1' '1 2 1'
'2 1 1' '2 2 1'

a(:,:,2) =

'1 1 2' '1 2 2'
'2 1 2' '2 2 2'

Displaying MATLAB Syntax for COM Objects
To determine which MATLAB types to use when passing arguments to COM
objects, use the invoke or methodsview functions. These functions list all the
methods found in an object, along with a specification of the types required for
each argument.

In the following example, a server called MyApp has a method TestMeth1 with
the following syntax:

HRESULT TestMeth1 ([out, retval] double* dret);

This method has no input argument, and it returns a variable of type double.
To display the MATLAB syntax for calling the method, type:

10-72

Handling COM Data in MATLAB® Software

h = actxserver('MyApp');
h.invoke

MATLAB displays:

ans =
TestMeth1 = double TestMeth1 (handle)

The signature of TestMeth1 is:

double TestMeth1(handle)

MATLAB requires you to use an object handle as an input argument for every
method, in addition to any input arguments required by the method itself.

Using the variable var, which is of type double, type:

var = h.TestMeth1;

or:

var = TestMeth1(h);

While the following syntax is correct, its use is discouraged:

var = invoke(h,'TestMeth1');

Now consider the server called MyApp1 with the following methods:

HRESULT TestMeth1 ([out, retval] double* dret);
HRESULT TestMeth2 ([in] double* d, [out, retval] double* dret);
HRESULT TestMeth3 ([out] BSTR* sout,

[in, out] double* dinout,
[in, out] BSTR* sinout,
[in] short sh,
[out] long* ln,
[in, out] float* b1,
[out, retval] double* dret);

Type the commands:

h = actxserver('MyApp1');

10-73

10 MATLAB® COM Client Support

h.invoke

MATLAB displays the list of methods:

ans =

TestMeth1 = double TestMeth1 (handle)

TestMeth2 = double TestMeth2 (handle, double)

TestMeth3 = [double, string, double, string, int32, single] ...

TestMeth3(handle, double, string, int16, single)

TestMeth2 requires an input argument d of type double, as well as returning
a variable dret of type double. Some examples of calling TestMeth2 are:

var = h.TestMeth2(5);

or:

var = TestMeth2(h, 5);

TestMeth3 requires multiple input arguments, as indicated within the
parentheses on the right side of the equals sign, and returns multiple output
arguments, as indicated within the brackets on the left side of the equals sign.

[double, string, double, string, int32, single] %output arguments

TestMeth3(handle, double, string, int16, single) %input arguments

The first input argument is the required handle, followed by four input
arguments.

TestMeth3(handle, in1, in2, in3, in4)

The first output argument is the return value retval, followed by five output
arguments.

[retval, out1, out2, out3, out4, out5]

This is how the arguments map into a MATLAB command:

[dret, sout, dinout, sinout, ln, b1] = TestMeth3(handle, ...
dinout, sinout, sh, b1)

10-74

Handling COM Data in MATLAB® Software

where dret is double, sout is string, dinout is double and is both an input
and an output argument, sinout is string (input and output argument), ln
is int32, b1 is single (input and output argument), handle is the handle to
the object, and sh is int16.

10-75

10 MATLAB® COM Client Support

Use MATLAB Application as Automation Client

In this section...

“MATLAB Sample Control” on page 10-76

“Using a MATLAB Application as an Automation Client” on page 10-76

“Connecting to an Existing Excel Application” on page 10-78

“Running a Macro in an Excel Server Application” on page 10-79

“MATLAB COM Client Example” on page 10-80

MATLAB Sample Control
MATLAB software ships with a simple example COM control that draws a
circle on the screen, displays some text, and fires events when the user single-
or double-clicks the control. Create the control by running the mwsamp.m file
in the matlabroot\toolbox\matlab\winfun folder, or type:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 300 300]);

This control is in the same folder, with the control’s type library. The type
library is a binary file used by COM tools to decipher the control’s capabilities.
For other examples using the mwsamp2 control, see “Writing Event Handlers”
on page 10-54.

Using a MATLAB Application as an Automation Client
This example uses MATLAB software as an Automation client and the
Microsoft Excel spreadsheet program as the server. It provides a good
overview of typical functions. In addition, it is a good example of using the
Automation interface of another application:

% MATLAB Automation client example
%
% Open Excel, add workbook, change active worksheet,
% get/put array, save.

% First, open an Excel Server.
e = actxserver('Excel.Application');

10-76

Use MATLAB® Application as Automation Client

% Insert a new workbook.
eWorkbook = e.Workbooks.Add;
e.Visible = 1;

% Make the first sheet active.
eSheets = e.ActiveWorkbook.Sheets;

eSheet1 = eSheets.get('Item', 1);
eSheet1.Activate;

% Put a MATLAB array into Excel.
A = [1 2; 3 4];
eActivesheetRange = e.Activesheet.get('Range', 'A1:B2');
eActivesheetRange.Value = A;

% Get back a range.
% It will be a cell array, since the cell range
% can contain different types of data.
eRange = e.Activesheet.get('Range', 'A1:B2');
B = eRange.Value;

% Convert to a double matrix. The cell array must contain only
% scalars.
B = reshape([B{:}], size(B));

% Now, save the workbook.
eWorkbook.SaveAs('myfile.xls');

% Avoid saving the workbook and being prompted to do so
eWorkbook.Saved = 1;
eWorkbook.Close;

% Quit Excel and delete the server.
e.Quit;
e.delete;

Note Make sure that you always close any workbook objects you create. This
can prevent potential memory leaks.

10-77

10 MATLAB® COM Client Support

Connecting to an Existing Excel Application
You can give MATLAB access to a file that is open by another application
by creating a new COM server from the MATLAB client, and then opening
the file through this server. This example shows how to do this for an Excel
application that has a file weekly_log.xls open:

excelapp = actxserver('Excel.Application');
wkbk = excelapp.Workbooks;
wdata = wkbk.Open('d:\weatherlog\weekly_log.xls');

To see what methods are available, type:

wdata.methods
Methods for class Interface.Microsoft_Excel_10.0_

Object_Library._Workbook:

AcceptAllChanges LinkInfo ReloadAs
Activate LinkSources RemoveUser

: : :
: : :

Access data from the spreadsheet by selecting a particular sheet (called 'Week
12' in the example), selecting the range of values (the rectangular area
defined by D1 and F6 here), and then reading from this range:

sheets = wdata.Sheets;
sheet12 = sheets.Item('Week 12');
range = sheet12.get('Range', 'D1', 'F6');
range.value

ans =
'Temp.' 'Heat Index' 'Wind Chill'
[78.4200] [32] [37]
[69.7300] [27] [30]
[77.6500] [17] [16]
[74.2500] [-5] [0]
[68.1900] [22] [35]

wkbk.Close;
excelapp.Quit;

10-78

Use MATLAB® Application as Automation Client

Running a Macro in an Excel Server Application
In the following example, MATLAB runs the Microsoft Excel spreadsheet
program in a COM server and invokes a macro that has been defined within
the active Excel spreadsheet file. The macro, init_last, takes no input
parameters and is called from the MATLAB client using the statement:

handle.ExecuteExcel4Macro('!macroname()');

Start the example by opening the spreadsheet file and recording a macro. The
macro used here simply sets all items in the last column to zero. Save your
changes to the spreadsheet.

Next, in MATLAB, create a COM server running an Excel application, and
open the spreadsheet:

h = actxserver('Excel.Application');
wkbk = h.Workbooks;
file = wkbk.Open('d:\weatherlog\weekly.xls');

Open the sheet that you want to change, and retrieve the current values in
the range of interest:

sheets = file.Sheets;
sheet12 = sheets.Item('Week 12');
range = sheet12.get('Range', 'D1', 'F5');
range.Value
ans =

[78] [32] [37]
[69] [27] [30]
[77] [17] [16]
[74] [-5] [-1]
[68] [22] [35]

Now execute the macro, and verify that the values have changed as expected:

h.ExecuteExcel4Macro('!init_last()');
range.Value
ans =

[78] [32] [0]
[69] [27] [0]
[77] [17] [0]

10-79

10 MATLAB® COM Client Support

[74] [-5] [0]
[68] [22] [0]

MATLAB COM Client Example
MATLAB includes an example, Programming with COM, that illustrate the
use of the COM Client with MATLAB.

10-80

Deploy ActiveX® Controls Requiring Run-Time Licenses

Deploy ActiveX Controls Requiring Run-Time Licenses

In this section...

“Create a Function to Build the Control” on page 10-81

“Build the Control and the License File” on page 10-81

“Build the Executable” on page 10-82

“Deploy the Files” on page 10-82

When you deploy a Microsoft ActiveX control that requires a run-time license,
you must include a license key, which the control reads at run-time. If the
key matches the control’s own version of the license key, an instance of the
control is created. Use the following procedure to deploy a run-time-licensed
control with a MATLAB application.

Create a Function to Build the Control
First, create a function to build the control and save is as a .m file. The file
must contain two elements:

• The pragma %#function actxlicense. This pragma causes the MATLAB
Compiler to embed a function named actxlicense into the standalone
executable file you build.

• A call to actxcontrol to create an instance of the control.

Place this file in a folder outside of the MATLAB code tree.

Here is an example file:

function buildcontrol
%#function actxlicense
h=actxcontrol('MFCCONTROL2.MFCControl2Ctrl.1',[10 10 200 200]);

Build the Control and the License File
Change to the folder where you placed the function you created to build
the control. Call the function. When it executes this function, MATLAB
determines whether the control requires a run-time license. If it does,
MATLAB creates another file, named actxlicense.m, in the current working

10-81

10 MATLAB® COM Client Support

folder. The actxlicense function defined in this file provides the license
key to MATLAB at run-time.

Build the Executable
Next, call MATLAB Compiler to create the standalone executable from the
file you created to build the control. The executable contains both the function
that builds the control and the actxlicense function.

mcc -m buildcontrol

Deploy the Files
Finally, distribute buildcontrol.exe, buildcontrol.ctf, and the control
(.ocx or .dll).

10-82

Use Microsoft® Forms 2.0 Controls

Use Microsoft Forms 2.0 Controls

In this section...

“Affected Controls” on page 10-83

“Replacement Controls” on page 10-83

You might encounter problems when creating or using Microsoft Forms
2.0 controls in MATLAB. Forms 2.0 controls are designed for use with
applications enabled by Microsoft Visual Basic for Applications (VBA). An
example is Microsoft Office software.

To work around these problems, use the following replacement controls,
or consult article 236458 in the Microsoft Knowledge Base for further
information:

http://support.microsoft.com/default.aspx?kbid=236458

Affected Controls
You might see this behavior with any of the following Forms 2.0 controls:

• Forms.TextBox.1

• Forms.CheckBox.1

• Forms.CommandButton.1

• Forms.Image.1

• Forms.OptionButton.1

• Forms.ScrollBar.1

• Forms.SpinButton.1

• Forms.TabStrip.1

• Forms.ToggleButton.1

Replacement Controls
Microsoft recommends the following replacements:

10-83

http://support.microsoft.com/default.aspx?kbid=236458

10 MATLAB® COM Client Support

Old New

Forms.TextBox.1 RICHTEXT.RichtextCtrl.1

Forms.CheckBox.1 vidtc3.Checkbox

Forms.CommandButton.1 MSComCtl2.FlatScrollBar.2

Forms.TabStrip.1 COMCTL.TabStrip.1

10-84

Use COM Collections

Use COM Collections
COM collections are a way to support groups of related COM objects that can
be iterated over. A collection is itself a special interface with a Count property
(read only), which contains the number of items in the collection, and an Item
method, which allows you to retrieve a single item from the collection.

The Item method is indexed, which means that it requires an argument that
specifies which item in the collection is being requested. The data type of the
index can be any data type that is appropriate for the particular collection
and is specific to the control or server that supports the collection. Although
integer indices are common, the index could just as easily be a string value.
Often, the return value from the Item method is itself an interface. Like all
interfaces, release this interface when you are finished with it.

This example iterates through the members of a collection. Each member of
the collection is itself an interface (called Plot and represented by a MATLAB
COM object called hPlot.) In particular, this example iterates through a
collection of Plot interfaces, invokes the Redraw method for each interface,
and then releases each interface:

hCollection = hControl.Plots;
for i = 1:hCollection.Count

hPlot = hCollection.invoke('Item', i);
hPlot.Redraw;
hPlot.release;

end;
hCollection.release;

10-85

10 MATLAB® COM Client Support

Use MATLAB Application as DCOM Client
Distributed Component Object Model (DCOM) is a protocol that allows clients
to use remote COM objects over a network. Additionally, MATLAB can be
used as a DCOM client with remote Automation servers if the operating
system on which MATLAB is running is DCOM enabled.

Note If you use MATLAB as a remote DCOM server, all MATLAB windows
appears on the remote machine.

10-86

MATLAB® COM Support Limitations

MATLAB COM Support Limitations
Limitations of MATLAB COM support are:

• MATLAB only supports indexed collections.

• COM controls are not printed with figure windows.

• “Unsupported Types” on page 10-68

• MATLAB does not support asynchronous events.

• A MATLAB COM ActiveX control container does not in-place activate
controls until they are visible.

10-87

10 MATLAB® COM Client Support

10-88

11

MATLAB COM Automation
Server Support

• “MATLAB COM Automation Server Interface” on page 11-2

• “MATLAB Automation Server Functions and Properties” on page 11-7

• “Using MATLAB Application as DCOM Server” on page 11-13

• “Using VT_DATE Data Type” on page 11-14

• “Specifying Shared or Dedicated Server” on page 11-15

• “Manually Create Automation Server” on page 11-16

• “Launch MATLAB as Automation Server in Desktop Mode” on page 11-17

• “Call MATLAB Function from Visual Basic .NET Client” on page 11-18

• “Call MATLAB Function from Web Application” on page 11-19

• “Call MATLAB Function from C# Client” on page 11-22

• “View MATLAB Functions from Visual Basic .NET Object Browser” on
page 11-24

11 MATLAB® COM Automation Server Support

MATLAB COM Automation Server Interface

In this section...

“What Is Automation?” on page 11-2

“Creating the MATLAB Server” on page 11-2

“Connecting to an Existing MATLAB Server” on page 11-5

What Is Automation?
Automation is a COM protocol that allows one application (the controller
or client) to control objects exported by another application (the server).
MATLAB software on Microsoft Windows operating systems supports COM
Automation server capabilities. Any Windows program that can be configured
as an Automation controller can control MATLAB. Some examples of
applications that can be Automation controllers are Microsoft Excel, Microsoft
Access, and Microsoft Project applications, and many Microsoft Visual Basic
and Microsoft Visual C++ programs.

Note If you plan to build your client application using C/C++, or Fortran, we
recommend you use MATLAB Engine instead of an Automation server.

Creating the MATLAB Server
To create a server, you need a programmatic identifier (ProgID) to identify
the server. The ProgID for MATLAB is matlab.application. For other
MATLAB ProgIDs, see “Programmatic Identifiers” on page 9-4.

How you create an Automation server depends on the controller you are using.
Consult your controller’s documentation for this information.

If your controller is a MATLAB application and your server is another
MATLAB application, you create the Automation server using the actxserver
function:

h = actxserver('matlab.application')
h =

COM.matlab.application

11-2

MATLAB® COM Automation Server Interface

This command automatically creates the Automation server. You can also
create the server manually. See “Manually Create Automation Server” on
page 11-16.

• “Using MATLAB Software as a Shared or Dedicated Server” on page 11-3

• “Accessing Your Server from the Startup Folder” on page 11-3

• “Get the Status of a MATLAB Automation Server” on page 11-4

• “Creating a MATLAB Automation Server from Visual Basic .NET
Application” on page 11-4

Using MATLAB Software as a Shared or Dedicated Server
The MATLAB Automation server has two modes:

• Shared — One or more client applications connect to the same MATLAB
server. All clients share the same server.

• Dedicated — Each client application creates its own dedicated MATLAB
server.

If you use matlab.application as your ProgID, MATLAB creates a shared
server. For more information, see “Specifying Shared or Dedicated Server” on
page 11-15.

Accessing Your Server from the Startup Folder
The MATLAB Automation server starts up in the matlabroot\bin\win32
folder. If this is not the MATLAB startup folder, the newly created server
does not run the MATLAB startup file (startup.m) and does not have access
to files in that folder.

To access files in the startup folder, do one of the following:

• Set the server’s working folder to the startup folder (using the cd function)
and add the startup folder to the server’s MATLAB path (using the
addpath function).

• Include the path name to the startup folder when referencing those files.

11-3

11 MATLAB® COM Automation Server Support

Get the Status of a MATLAB Automation Server
Use the enableservice function to determine the current state of a MATLAB
Automation server. The function returns a logical value, where logical 1
(true) means MATLAB is an Automation server and logical 0 (false) means
MATLAB is not an Automation server.

For example, if you type:

enableservice('AutomationServer')

and MATLAB displays:

ans =
1

then MATLAB is currently an Automation server.

Creating a MATLAB Automation Server from Visual Basic .NET
Application
If you use a Visual Basic client application to access a MATLAB Automation
server, you have two options for creating the server:

• “Accessing Methods from the Visual Basic Object Browser” on page 11-4

• “Using CreateObject” on page 11-5

Accessing Methods from the Visual Basic Object Browser. You can
use the Object Browser of your Visual Basic client application to see what
methods are available from a MATLAB Automation server. To do this you
need to reference the MATLAB type library in your Visual Basic project.

To set up your Visual Basic project:

1 Select the Project menu.

2 Select Reference from the subsequent menu.

3 Check the box next to the MATLAB Application Type Library.

4 Click OK.

11-4

MATLAB® COM Automation Server Interface

In your Visual Basic code, use the New method to create the server:

Matlab = New MLApp.MLApp

View MATLAB Automation methods from the Visual Basic Object Browser
under the Library called MLAPP.

Using CreateObject. To use the Visual Basic CreateObject method, type:

MatLab = CreateObject("Matlab.Application")

Connecting to an Existing MATLAB Server
It is not always necessary to create a new instance of a MATLAB
server whenever your application needs some task done in MATLAB.
Clients can connect to an existing MATLAB Automation server using the
actxGetRunningServer function or by using a command similar to the Visual
Basic .NET GetObject command.

Using Visual Basic .NET Code
The Visual Basic .NET command shown here returns a handle h to the
MATLAB server application:

h = GetObject(, "matlab.application")

Note It is important to use the syntax shown above to connect to an existing
MATLAB Automation server. Omit the first argument, and make sure the
second argument is as shown.

The following Visual Basic .NET example connects to an existing MATLAB
server, then executes a plot command in the server. If you do not already have
a MATLAB server running, create one following the instructions in “Creating
a MATLAB Automation Server from Visual Basic .NET Application” on page
11-4.

Dim h As Object
h = GetObject(, "matlab.application")

' Handle h should be valid now.

11-5

11 MATLAB® COM Automation Server Support

' Test it by calling Execute.
h.Execute ("plot([0 18], [7 23])")

11-6

MATLAB® Automation Server Functions and Properties

MATLAB Automation Server Functions and Properties
MATLAB functions and properties enable an Automation controller to
manipulate data in the MATLAB workspace. MATLAB can be both a
controller and a server. The examples in this section use MATLAB as the
client application.

This section explains how to call functions in the MATLAB Automation server
and how to use properties that affect the server. These are shown in the
following tables and are described in individual function reference pages.

In this section...

“Executing Commands in the MATLAB Server” on page 11-7

“Exchanging Data with the Server” on page 11-9

“Controlling the Server Window” on page 11-10

“Terminating the Server Process” on page 11-10

“Client-Specific Information” on page 11-11

“Using the Visible Property” on page 11-11

Executing Commands in the MATLAB Server
The client program can execute commands in the MATLAB server using
these functions.

Function Description

Execute Execute MATLAB command in server

Feval Evaluate MATLAB command in server

Using Execute
Use the Execute function when you want the MATLAB server to execute a
command that can be expressed in a single string. For example:

h = actxserver('matlab.application');

h.PutWorkspaceData('A', 'base', rand(6))

11-7

11 MATLAB® COM Automation Server Support

h.Execute('A(4:6,:) = [];'); % remove rows 4-6
B = h.GetWorkspaceData('A', 'base')

MATLAB displays:

B =
0.6208 0.2344 0.6273 0.3716 0.7764 0.7036
0.7313 0.5488 0.6991 0.4253 0.4893 0.4850
0.1939 0.9316 0.3972 0.5947 0.1859 0.1146

If there is an error, the Execute function returns the MATLAB error message
with the characters ??? prepended to the text.

Using Feval
Use the Feval function when you want the server to execute commands that
you cannot express in a single string. The following example uses variables
defined in the client, rows and cols, to modify the server.

This is a continuation of the previous example:

rows = 6; cols = 3;
h.Feval('reshape', 0, 'A=', rows, cols);

MATLAB interprets A in the expression 'A=' as a server variable name.

The reshape function in the previous statement does not make an assignment
to the server variable A; it is equivalent to the following MATLAB statement:

reshape(A,6,3)

which returns a result, but does not assign the new array. If you get the
variable A from the server, it is unchanged:

B = h.GetWorkspaceData('A', 'base')

MATLAB displays:

B =
0.6208 0.2344 0.6273 0.3716 0.7764 0.7036
0.7313 0.5488 0.6991 0.4253 0.4893 0.4850

11-8

MATLAB® Automation Server Functions and Properties

0.1939 0.9316 0.3972 0.5947 0.1859 0.1146

Use the Feval function return value to get the result of this type of operation.
For example, the following statement reshapes the server-side array A and
returns the result of this operation in the client-side variable a:

a = h.Feval('reshape', 1, 'A=', rows, cols);

The Feval function returns a cell array. To view the contents, type:

a{:}

MATLAB displays:

ans =
0.6208 0.6273 0.7764
0.7313 0.6991 0.4893
0.1939 0.3972 0.1859
0.2344 0.3716 0.7036
0.5488 0.4253 0.4850
0.9316 0.5947 0.1146

Exchanging Data with the Server
MATLAB provides functions to read and write data to any workspace of a
MATLAB server. In these commands, pass the name of the variable to read or
write, and the name of the workspace holding that data.

Function Description

GetCharArray Get character array from server

GetFullMatrix Get matrix from server

GetWorkspaceData Get any type of data from server

PutCharArray Store character array in server

PutFullMatrix Store matrix in server

PutWorkspaceData Store any type of data in server

The Get/PutCharArray functions read and write string values to the
MATLAB server.

11-9

11 MATLAB® COM Automation Server Support

The Get/PutFullMatrix functions pass data as a SAFEARRAY data type. You
can use these functions with any client that supports the SAFEARRAY type.
This includes MATLAB and Visual Basic clients.

The Get/PutWorkspaceData functions pass data as a variant data type.
Use these functions with any client that supports the variant type. These
functions are especially useful for VBScript clients because VBScript does
not support the SAFEARRAY data type.

In this example, write a string to variable str in the base workspace of the
MATLAB server and read it back to the client:

h = actxserver('matlab.application');
h.PutCharArray('str', 'base', ...

'He jests at scars that never felt a wound.');

S = h.GetCharArray('str', 'base')
S =

He jests at scars that never felt a wound.

Controlling the Server Window
These functions enable you to make the server window visible or to minimize
it.

Function Description

MaximizeCommandWindow Display server window on Windows desktop

MinimizeCommandWindow Minimize size of server window

In this example, create a COM server running MATLAB and minimize it:

h = actxserver('matlab.application');
h.MinimizeCommandWindow;

Terminating the Server Process
When you are finished with the MATLAB server, quit the MATLAB session.

Function Description

Quit Quit the MATLAB session

11-10

MATLAB® Automation Server Functions and Properties

To quit MATLAB, type:

h.Quit;

Client-Specific Information
This section provides information specific to MATLAB and Visual Basic .NET
clients only.

For MATLAB Clients
To see a summary of all functions along with the required syntax, use the
invoke function as follows:

handle = actxserver('matlab.application');
handle.invoke

For Visual Basic .NET Clients
Data types for the arguments and return values of the server functions are
expressed as Automation data types, which are language-independent types
defined by the Automation protocol.

For example, BSTR is a wide-character string type defined as an Automation
type, and is the same data format used by the Visual Basic language to store
strings. Any COM-compliant controller should support these data types,
although the details of how you declare and manipulate these are controller
specific.

Using the Visible Property
You have the option of making MATLAB visible or not by setting the Visible
property. When visible, MATLAB appears on the desktop, enabling the user
to interact with it. This might be useful for such purposes as debugging. When
not visible, the MATLAB window does not appear, thus perhaps making for a
cleaner interface and also preventing any interaction with the application.

By default, the Visible property is enabled, or set to 1:

h = actxserver('matlab.application');
h.Visible
ans =

11-11

11 MATLAB® COM Automation Server Support

1

You can change the Visible property by setting it to 0 (invisible) or 1
(visible). The following command removes the server application window
from the desktop:

h.Visible = 0;
h.Visible
ans =

0

11-12

Using MATLAB® Application as DCOM Server

Using MATLAB Application as DCOM Server
Distributed Component Object Model (DCOM) is a protocol that allows COM
connections to be established over a network. If you are using a version of
the Windows operating system that supports DCOM and a controller that
supports DCOM, you can use the controller to start a MATLAB server on a
remote machine.

To do this, DCOM must be configured properly, and MATLAB must be
installed on each machine that is used as a client or server. (Even though the
client machine may not be running MATLAB in such a configuration, the
client machine must have a MATLAB installation because certain MATLAB
components are required to establish the remote connection.) Consult the
DCOM documentation for how to configure DCOM for your environment.

11-13

11 MATLAB® COM Automation Server Support

Using VT_DATE Data Type
To pass a VT_DATE type input to a Visual Basic program or an ActiveX control
method, use the MATLAB class COM.date. For example:

d = COM.date(2005,12,21,15,30,05);
get(d)

Value: 7.3267e+005
String: '12/21/2005 3:30:05 PM'

Use the now function to set the Value property to a date number:

d.Value = now;

11-14

Specifying Shared or Dedicated Server

Specifying Shared or Dedicated Server
You can start the MATLAB Automation server in one of two modes – shared
or dedicated. A dedicated server is dedicated to a single client; a shared server
is shared by multiple clients. The mode is determined by the programmatic
identifier (ProgID) used by the client to start MATLAB.

Starting a Shared Server
The ProgID, matlab.application, specifies the default mode, which is shared.
You can also use the version-specific ProgID, matlab.application.N.M,
where N is the major version and M is the minor version of your MATLAB. For
example, use N = 7 and M = 4 for MATLAB version 7.4.

Once MATLAB is started as a shared server, all clients that request a
connection to MATLAB using the shared server ProgID connect to the already
running instance of MATLAB. In other words, there is never more than one
instance of a shared server running, since it is shared by all clients that use
the shared server ProgID.

Starting a Dedicated Server
To specify a dedicated server, use the ProgID, matlab.application.single,
(or the version-specific ProgID, matlab.application.single.N.M).

Each client that requests a connection to MATLAB using a dedicated ProgID
creates a separate instance of MATLAB; it also requests the server not be
shared with any other client. Therefore, there can be several instances of a
dedicated server running simultaneously, since the dedicated server is not
shared by multiple clients.

11-15

11 MATLAB® COM Automation Server Support

Manually Create Automation Server
Microsoft Windows operating system automatically creates an Automation
server when a controller application first establishes a server connection.
Alternatively, you can manually create the server prior to starting any of
the client processes.

To manually create a MATLAB server, use the /Automation switch in the
MATLAB startup command. You can do this from the DOS command line
by typing:

matlab /Automation

Alternatively, you can add this switch every time you run MATLAB, as
follows:

1 Right-click the MATLAB shortcut icon

and select Properties from the context menu. The Properties dialog box
for matlab.exe opens to the Shortcut tab.

2 In the Target field, add /Automation to the end of the target path for
matlab.exe. Be sure to include a space between the file name and the
symbol /. For example:

"C:\Program Files\MATLAB\R2006a\bin\win32\MATLAB.exe /Automation"

Note When the operating system automatically creates a MATLAB server,
it too uses the /Automation switch. In this way, MATLAB servers are
differentiated from other MATLAB sessions. This protects controllers from
interfering with any interactive MATLAB sessions that may be running.

11-16

Launch MATLAB® as Automation Server in Desktop Mode

Launch MATLAB as Automation Server in Desktop Mode
To launch MATLAB as a COM Automation server in full desktop mode, use
the programmatic identifier Matlab.Desktop.Application. For example,
type:

h = actxserver('Matlab.Desktop.Application')

An example in Microsoft Visual Basic is:

Dim MatLab As Object
Dim Result As String
MatLab = CreateObject("Matlab.Desktop.Application")
Result = MatLab.Execute("surf(peaks)")

11-17

11 MATLAB® COM Automation Server Support

Call MATLAB Function from Visual Basic .NET Client
This example calls a user-defined MATLAB function named solve_bvp from
a Microsoft Visual Basic client application through a COM interface. It also
plots a graph in a new MATLAB window and performs a simple computation:

Dim MatLab As Object
Dim Result As String
Dim MReal(1, 3) As Double
Dim MImag(1, 3) As Double

MatLab = CreateObject("Matlab.Application")

'Calling MATLAB function from VB
'Assuming solve_bvp exists at specified location
Result = MatLab.Execute("cd d:\matlab\work\bvp")
Result = MatLab.Execute("solve_bvp")

'Executing other MATLAB commands
Result = MatLab.Execute("surf(peaks)")
Result = MatLab.Execute("a = [1 2 3 4; 5 6 7 8]")
Result = MatLab.Execute("b = a + a ")
'Bring matrix b into VB program
MatLab.GetFullMatrix("b", "base", MReal, MImag)

11-18

Call MATLAB Function from Web Application

Call MATLAB Function from Web Application
This example shows you how to create a Web page that uses a MATLAB
application as an Automation server. Run this example from a local system;
you cannot deploy it from a Web server. For another example using ASP.NET,
see Technical Support solution 1 3JJZWN.

You can invoke MATLAB as an Automation server from any language that
supports COM, so for Web applications, you can use VBScript and JavaScript.
While this example is simple, it illustrates techniques for passing commands
to MATLAB and writing data to and retrieving data from the MATLAB
workspace. See “Exchanging Data with the Server” on page 11-9 for related
functions.

VBScript and HTML forms are combined in this example to create an
interface that enables the user to select a MATLAB plot type from a pull-down
menu, click a button, and create the plot in a MATLAB figure window. To
accomplish this, the HTML file contains code that:

• Starts MATLAB as an Automation server via a VBScript.

• When users click a button on the HTML page, a VBScript executes that:

1 Determines the type of plot selected.

2 Forms a command string to create the type of plot selected.

3 Forms a string describing the type of plot selected, which passes to the
MATLAB base workspace in a variable.

4 Executes the MATLAB command.

5 Retrieves the descriptive string from the MATLAB workspace.

6 Updates the text box on the HTML page.

Here is the HTML used to create this example:

<HTML>

<HEAD>

<TITLE>Example of calling MATLAB from VBScript</TITLE>

</HEAD>

<BODY>

11-19

http://www.mathworks.com/support/solutions/data/1-3JJZWN.html

11 MATLAB® COM Automation Server Support

Example of calling MATLAB from VBScript

<!-- %%%%%%%%%%%%%%%%%%%% BEGIN SCRIPT %%%%%%%%%%%%%%%%%%%% -->

<SCRIPT LANGUAGE="VBScript">

<!-- Invoke MATLAB as a COM Automation server upon loading page

' Initialize global variables

Dim MatLab 'COM Automation server variable

Dim MLcmd 'string to send to MATLAB for execution

' Invoke COM Automation server

Set MatLab = CreateObject("Matlab.Application")

' End initialization script -->

</SCRIPT>

<!-- %%%%%%%%%%%%%%%%%%%% END SCRIPT %%%%%%%%%%%%%%%%%%%% -->

<!-- Create form to contain controls -->

<FORM NAME="Form">

<!-- Create pulldown menu to select which plot to view -->

<P>Select type of plot:

<SELECT NAME=plot_choice>

<OPTION SELECTED VALUE=first>Line</OPTION>

<OPTION VALUE=second>Peaks</OPTION>

<OPTION VALUE=third>Logo</OPTION>

</SELECT>

<!-- Create button to create plot and fill text area -->

<P>Create figure:

<INPUT TYPE="button" NAME="plot_but" VALUE="Plot">

<!-- %%%%%%%%%%%%%%%%%%%% BEGIN SCRIPT %%%%%%%%%%%%%%%%%%%% -->

<SCRIPT FOR="plot_but" EVENT="onClick" LANGUAGE="VBScript">

<!-- Start script

Dim plot_choice

Dim text_str 'string to display in text area

Dim form_var 'form object variable

Set form_var = Document.Form

plot_choice = form_var.plot_choice.value

' Condition MATLAB command to execute based on plot choice

If plot_choice = "first" Then

11-20

Call MATLAB Function from Web Application

MLcmd = "figure; plot(1:10);"

text_str = "Simple line plot of 1 to 10"

Call MatLab.PutCharArray("text","base",text_str)

Elseif plot_choice = "second" Then

MLcmd = "figure; mesh(peaks);"

text_str = "Mesh plot of peaks"

Call MatLab.PutCharArray("text","base",text_str)

Elseif plot_choice = "third" Then

MLcmd = "figure; logo;"

text_str = "MATLAB logo"

Call MatLab.PutCharArray("text","base",text_str)

End If

' Execute command in MATLAB

MatLab.execute(MLcmd)

' Get variable from MATLAB into VBScript

Call MatLab.GetWorkspaceData("text","base","text_str")

' Update text area

form_var.plottext.value = text_str

' End script -->

</SCRIPT>

<!-- %%%%%%%%%%%%%%%%%%%% END SCRIPT %%%%%%%%%%%%%%%%%%%% -->

<!-- Create text area to show text -->

<P><TEXTAREA NAME="plottext" ROWS="1" COLS="50"

CONTENTEDITABLE="false"></TEXTAREA>

</FORM>

</BODY>

</HTML>

11-21

11 MATLAB® COM Automation Server Support

Call MATLAB Function from C# Client
This example creates data in the client C# program and passes it to MATLAB.
The matrix (containing complex data) is then passed back to the C# program.

The reference to the MATLAB Type Library for C# is:

MLApp.MLApp matlab = new MLApp.MLApp();

From your C# client program, add a reference to your project to the MATLAB
COM object. For example, in Microsoft Visual Studio, open your project. From
the Project menu, select Add Reference. Select the COM tab in the Add
Reference dialog box. Select the MATLAB application.

Here is the complete example:

using System;
namespace ConsoleApplication4
{
class Class1
{
[STAThread]
static void Main(string[] args)
{
MLApp.MLApp matlab = new MLApp.MLApp();

System.Array pr = new double[4];
pr.SetValue(11,0);
pr.SetValue(12,1);
pr.SetValue(13,2);
pr.SetValue(14,3);

System.Array pi = new double[4];
pi.SetValue(1,0);
pi.SetValue(2,1);
pi.SetValue(3,2);
pi.SetValue(4,3);

matlab.PutFullMatrix("a", "base", pr, pi);

11-22

Call MATLAB Function from C# Client

System.Array prresult = new double[4];
System.Array piresult = new double[4];

matlab.GetFullMatrix("a", "base", ref prresult, ref piresult);
}
}
}

11-23

11 MATLAB® COM Automation Server Support

View MATLAB Functions from Visual Basic .NET Object
Browser

You can find out what methods are available from a MATLAB Automation
server using the Object Browser of your Microsoft Visual Basic client
application. To do this, follow this procedure in the client application to
reference the MATLAB Application Type Library:

1 Select the Project menu.

2 Select Reference from the subsequent menu.

3 Check the box next to the MATLAB Application Type Library.

4 Click OK.

This enables you to view MATLAB Automation methods from the Visual
Basic Object Browser under the Library called MLAPP. You can also see a list
of MATLAB Automation methods when you use the term Matlab followed by
a period. For example:

Dim Matlab As MLApp.MLApp
Private Sub View_Methods()
Matlab = New MLApp.MLApp
'The next line shows a list of MATLAB Automation methods
Matlab.
End Sub

11-24

12

Using Web Services with
MATLAB

• “How You Can Use Web Services with MATLAB” on page 12-2

• “Ways of Using Web Services in MATLAB” on page 12-5

• “Access Web Services That Use WSDL Documents” on page 12-6

• “Access Web Services Using MATLAB SOAP Functions” on page 12-10

• “Considerations When Using Web Services” on page 12-13

• “Where to Get Information About Web Services” on page 12-16

12 Using Web Services with MATLAB®

How You Can Use Web Services with MATLAB

In this section...

“What Are Web Services in MATLAB?” on page 12-2

“What You Need to Use Web Services with MATLAB” on page 12-3

“Typical Applications Using Web Services with MATLAB” on page 12-4

What Are Web Services in MATLAB?
Web services allow applications running on disparate computers, operating
systems, and development environments to communicate with each other.
Using Web services technologies, client workstations can access and execute
APIs residing on a remote server. The client and server communicate via
XML-formatted messages, following the W3C® SOAP protocol, and typically
via the HTTP protocol.

MATLAB acts as a Web service client, providing functions you can use
to access existing Web services on a server. The functions facilitate
communication with the server, relieving you of the need to work with XML,
complex SOAP messages, and special Web services tools. Through these
functions, you can use Web services in your normal MATLAB environment,
such as in the Command Window and in MATLAB programs you write.

12-2

How You Can Use Web Services with MATLAB®

Diagram Showing Web Services in MATLAB®

An organization that wants to make APIs available to disparate clients
creates the APIs and related Web service facilities for the server, using tools
from Apache Axis, for example. Organizations can choose to make the Web
services available only to local clients via the organization’s intranet, or can
offer them to the general public via the Web.

What You Need to Use Web Services with MATLAB
You need to find out from your own organization and the organizations you
work with if they provide Web services of interest to you. There are publicly
available Web services, some for free and some provided for a fee. For links
to some of these Web services, see “Where to Get Information About Web
Services” on page 12-16.

Functions for MATLAB Web services work with Web services that comply
with the Basic Profile 1 to SOAP Binding specification. To find out more
about the SOAP standards, see the links in “Where to Get Information About
Web Services” on page 12-16.

You need to know basic information about the Web services you want to use.

You need access to the server from the workstation where you use MATLAB.
If there is a proxy server, you need to provide settings for it to MATLAB using
Web preferences. To do so, on the Home tab, in the Environment section,

12-3

12 Using Web Services with MATLAB®

click Preferences > Web. For more information, click the Help button in
the Preferences dialog box.

Typical Applications Using Web Services with MATLAB

Accessing Data from a Server
You are creating new climate models using MATLAB, and you want to use
climate data from a database housed at a government weather bureau.
The bureau’s server provides access to the database via Web services so
that anyone who has Web service client technologies can retrieve the data,
regardless of their operating system or development tools. You use functions
for MATLAB Web services to get the data from the server, and then you use
the data in MATLAB to develop your models.

Running Computations on a Server
A weather bureau provides Web services that allow you to run complex models
on their systems, using your data and parameters. You use functions for
MATLAB Web services to specify your input, run the models on the bureau’s
server, and get back the results for your use in MATLAB.

Updating a Database on a Server
A weather bureau provides a Web service for researchers involved in a
widespread climate study to submit their results. Researchers use a variety of
systems and tools, but they need to provide their results using the server’s
Web service facilities. As one of the researchers, you use MATLAB to generate
the results for the study, and you use functions for MATLAB Web services
to submit your results to the server.

Activating MATLAB License
If you have activated MATLAB, you used a Web service. After you install
MATLAB, you activate your installation by getting a license file from a server
at MathWorks. To get the file for your installation, MATLAB uses a Web
service provided on a MathWorks server. With the activation Web service,
you provide information to MathWorks, and in return, the server provides a
license file to your MATLAB installation. MATLAB provides a user interface
for the activation that makes you unaware you are using a Web service.

12-4

Ways of Using Web Services in MATLAB®

Ways of Using Web Services in MATLAB

Two Basic Ways to Access Web Services from MATLAB
There are two primary ways for using Web services in MATLAB, using the
createClassFromWsdl function, or using the SOAP functions. When the
Web service you want to use provides a Web Services Description Language
(WSDL) document, use the MATLAB createClassFromWsdl function
because it provides a more convenient way to work with the service. The
createClassFromWsdl function actually uses the SOAP functions, but with it,
you do not need to know how to use the SOAP protocol. When the Web service
does not provide a WSDL document, use the MATLAB SOAP functions:
createSoapMessage, callSoapService, and parseSoapResponse.

If you want to perform similar tasks with different Web services that provide
WSDL documents, you might be able to create and use less code by using the
SOAP functions instead of the createClassFromWsdl function.

How MATLAB Accesses Web Services
Both the createClassFromWsdl function and the SOAP functions access Web
services in the same basic way:

1 You initiate interaction with the server by sending a request via MATLAB
Web service functions. You provide input about the location of the Web
service, the operation you want to perform, and any necessary parameters.

2 From your input, MATLAB constructs the SOAP message and sends it
to the server.

3 When the server receives the request, it performs the processing and sends
a SOAP response back to MATLAB.

4 MATLAB handles the response from the server, extracting data from the
SOAP message and converting it for use in MATLAB.

12-5

12 Using Web Services with MATLAB®

Access Web Services That Use WSDL Documents

In this section...

“Using the createClassFromWsdl Function” on page 12-6

“Example — createClassFromWsdl Function” on page 12-7

Using the createClassFromWsdl Function
A WSDL document uses a standard format to describe a server’s operations,
arguments, and transactions. The createClassFromWsdl function creates a
MATLAB class that allows you to use the server APIs.

To use the createClassFromWsdl function, you need to know the location
of the Web service’s WSDL document. The createClassFromWsdl function
works with WSDL documents that comply with the WS-I 1.0 standard and
use one of these forms: RPC-encoded, RPC-literal, Document-literal, or
Document-literal-wrapped.

If the Web service does not provide a WSDL document, see “Access Web
Services Using MATLAB SOAP Functions” on page 12-10 for an alternative.

Here are the basic steps for using the createClassFromWsdl function:

1 Change the MATLAB current folder to the location where you want to use
the files generated from the WSDL document.

2 Run createClassFromWsdl, supplying the WSDL document location, which
can be a URL or a path to a file.

The function converts the server’s APIs to a MATLAB class, and creates
a class folder in the current folder. The class folder contains methods for
using the server’s APIs. The function always creates a constructor method
that has the same name as the class, and a display method for the class,
called display.

Note You only need to run the createClassFromWsdl function once. You
can access the class anytime after that.

12-6

Access Web Services That Use WSDL Documents

For more information, see the createClassFromWsdl reference page

3 Create an object of the class whenever you want to use the operations of
the Web service.

4 View information about the class to see what methods (operations) are
available for you to use.

5 Use the methods of the object to run applications on and exchange data
with the server.

The methods create SOAP messages and send them to the server. The
server performs operations and sends data back to MATLAB.

MATLAB automatically converts SOAP data types to MATLAB types,
and vice versa—for more information, see “XML-MATLAB Data Type
Conversion Used in Web Services” on page 12-13.

Example — createClassFromWsdl Function
This example retrieves information from a database that provides
standardized test scores. The WSDL document is located at
http://examplestandardtests.com/scoreswebservice?WSDL.

Note The example does not use an actual WSDL document; therefore, you
cannot run it. The example only illustrates how to use the function.

1 Run the createClassFromWsdl statement:

createClassFromWsdl('http://examplestandardtests.com/scoreswebservice?WSDL')

MATLAB creates the class folder @TestScoreWebService in the current
folder and displays the name:

ans = TestScoreWebService

2 Create an object of the class by running

obj = TestScoreWebService

12-7

12 Using Web Services with MATLAB®

MATLAB returns:

endpoint: 'http://examplestandardtests.com/scoreswebservice'
wsdl: 'http://examplestandardtests.com/scoreswebservice?WSDL'

3 View the methods of the class to see what you can do. These are two ways
to view the methods:

• Run methods(obj).

• In the Current Folder browser, view the contents of the
@TestScoreWebService folder. The description shows the syntax for the
methods.

For the example, the methods include:

display
StudentNames
Tests
TestScoreWebService

4 Use the StudentNames method to retrieve the names of all students who
took tests by running

students = StudentNames(obj)

MATLAB returns a structure with the names of test takers:

students =

StudentInfo: [125x1 struct]

5 View the data in the first element by running

students.StudentInfo(1)

MATLAB returns:

StudentNameLast: 'Benjamin'
StudentNameFirst: 'Ali'

Alternatively, you can view the information using the Variables editor by
running

12-8

Access Web Services That Use WSDL Documents

openvar(students)

Then in the Variables editor, double-click StudentInfo. In the resulting
pane, double-click the first <1x1 struct> to view the information. For more
information, see “Copy, Paste, and Rename Variables”.

12-9

12 Using Web Services with MATLAB®

Access Web Services Using MATLAB SOAP Functions

In this section...

“Using the MATLAB SOAP Functions” on page 12-10

“Example — SOAP Functions” on page 12-10

Using the MATLAB SOAP Functions
To use the createSoapMessage, callSoapService, and parseSoapResponse
functions, you need some knowledge of SOAP as well as specific information
about the Web services you want to use, such as the endpoint and the
operations. If the server provides a WSDL document, see “Access Web
Services That Use WSDL Documents” on page 12-6 for a potentially more
convenient option.

This is a typical way to use the SOAP functions. For details about each
function, see the function reference page.

1 Construct a message you want to send to the server using
createSoapMessage. Provide this input to the function: namespace of the
server, name of the server operations you want to run, input you need to
provide for that operations, parameter of the operation, data types, and
message style (optional).

2 Send the message to the server using callSoapService. Provide this input
to the function: endpoint, SOAP action, and the SOAP message you created
in step 1. MATLAB returns the reply from the server.

3 Convert the reply from the server and extract the desired data into a
MATLAB variable using parseSoapResponse. MATLAB automatically
converts SOAP data types to MATLAB data types—for more information,
see “XML-MATLAB Data Type Conversion Used in Web Services” on page
12-13.

Example — SOAP Functions
This example retrieves information about books from a library database,
specifically, the author’s name for a given book title.

12-10

Access Web Services Using MATLAB® SOAP Functions

Note The example does not use an actual endpoint; therefore, you cannot
run it. The example only illustrates how to use the SOAP functions.

1 Create a SOAP message that retrieves the name of the author of a book titled
“In the Fall”:

message = createSoapMessage(...

'urn:LibraryCatalog',... % Relative path to namespace of library service on local intranet

'getAuthor',... % Method (operation) provided by service to retrieve author's name

{'In the Fall'},... % Input that method requires; here, the title of the book

{'nameToLookUp'},... % Name of paremeter of getAuthor

{'{http://www.w3.org/2001/XMLSchema}string'},... % Data type for the result

'rpc') % SOAP message style

MATLAB returns

message =

[#document: null]

This response does not necessarily indicate that the message is valid, although
certain input problems produce an error message.

2 Send the message to the server for processing, and get the result (author’s
name) back from the server in a SOAP message:

response = callSoapService('http://test/soap/services/LibraryCatalog',... % Service's endpoint

'urn:LibraryCatalog#getAuthor',... % Server method to run

message) % SOAP message created using createSoapMessage

MATLAB returns the following SOAP message in one long line (displayed
here in separate lines for legibility):

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<getAuthorResponse xmlns="urn:LibraryCatalog">

12-11

12 Using Web Services with MATLAB®

<ns1:getAuthorReturn xmlns:ns1="http://latestversion.soap.test">
Kate Alvin
</ns1:getAuthorReturn>
</getAuthorResponse>
</soapenv:Body>
</soapenv:Envelope>

3 Extract the author’s name from the SOAP message returned by the server
in step 2:

author = parseSoapResponse(response)

MATLAB returns:

author = Kate Alvin

In MATLAB, author is a char class. MATLAB automatically converted the
XML string data type to char.

12-12

Considerations When Using Web Services

Considerations When Using Web Services

In this section...

“XML-MATLAB Data Type Conversion Used in Web Services” on page 12-13

“Programming with Web Services” on page 12-14

XML-MATLAB Data Type Conversion Used in Web
Services
MATLAB SOAP functions automatically convert XML data types used in
SOAP messages to MATLAB types (classes), and vice-versa. The following
table contains the XML type and the corresponding MATLAB type.

XML Data Type MATLAB Type (Class)

string char array

boolean logical scalar

decimal double scalar

float double scalar

double double scalar

duration double scalar

time double scalar

date double scalar

gYearMonth char array

gYear char array

gMonthDay char array

hexbinary double array

base64Binary double array

anyURI char array

QName char array

12-13

12 Using Web Services with MATLAB®

Programming with Web Services
When creating MATLAB files that rely on Web services, consider the
following:

• If the Web service you want to use is on the Internet, your application
performance could be unpredictable because it depends in part on Internet
performance.

• Conventions and established procedures for Web services and related
technologies, like WSDL and SOAP, are still evolving. You could find
inconsistencies or unexpected behavior when using Web services.

• A Web service could change over time, which can impact its usage and
results in MATLAB.

Use common program control and error-handling routines to minimize the
risks, such as:

• Use try/catch statements to catch errors that result from method calls or
from the createClassFromWsdl function.

• Use If statements to determine if expressions or statements are true or
false. For example, if you have a valid URL for a WSDL document, you can
determine whether or not you have a local copy of the WSDL document. If
you do not, you can achieve better performance if you create a local copy
and use the local copy instead of the version at the URL:

wsdlUrl = ['http://www.xmethods.net/sd/2001' ...
'/CurrencyExchangeService.wsdl'];

wsdlFile = 'CurrencyExchangeService.wsdl';

the following if statement stores the WSDL locally, if it does not already
exist:

if ~(exist(wsdlFile,'file') == 2)
urlwrite(wsdlUrl,wsdlFile);

end

• Use error functions to report specific errors. The following example shows
an error function used in an try/catch statement:

try

12-14

Considerations When Using Web Services

students = studentNames(obj);
catch
error('Could not return name.');

end

For more information about program control and error-handling statements,
see “Exception Handling in a MATLAB Application”.

12-15

12 Using Web Services with MATLAB®

Where to Get Information About Web Services

Resources for Web Services and SOAP

• Wikipedia® entry for Web Service

• Wikipedia entry for SOAP (protocol)

• World Wide Web Consortium (W3C) SOAP specification

• W3C status codes for HTTP errors

• W3 Schools SOAP Tutorial

Resources for WSDL

• Wikipedia entry for Web Services Description Language (WSDL)

• W3C WSDL specification

• Web Services Description Language for Java Toolkit (WSDL4J), tools for
creating and working with WSDL documents.

• W3 Schools WSDL Tutorial

Tools for Creating Web Services

• Oracle® Java Web Services

• Microsoft Developer Network—Web Services

• Apache Axis Web Services

12-16

http://en.wikipedia.org/wiki/Web_services
http://en.wikipedia.org/wiki/SOAP_(protocol)
http://www.w3.org/TR/SOAP/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3schools.com/soap/default.asp
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://www.w3.org/TR/wsdl
http://sourceforge.net/projects/wsdl4j
http://www.w3schools.com/wsdl/default.asp
http://java.sun.com/webservices/
http://msdn.microsoft.com/webservices/
http://ws.apache.org/axis/

13

Serial Port I/O

• “Introduction” on page 13-2

• “Overview of the Serial Port” on page 13-5

• “Getting Started with Serial I/O” on page 13-20

• “Creating a Serial Port Object” on page 13-27

• “Connecting to the Device” on page 13-32

• “Configuring Communication Settings” on page 13-33

• “Writing and Reading Data” on page 13-34

• “Events and Callbacks” on page 13-55

• “Using Control Pins” on page 13-65

• “Debugging: Recording Information to Disk” on page 13-71

• “Saving and Loading” on page 13-78

• “Disconnecting and Cleaning Up” on page 13-80

• “Property Reference” on page 13-82

• “Properties — Alphabetical List” on page 13-86

13 Serial Port I/O

Introduction

In this section...

“What Is the MATLAB Serial Port Interface?” on page 13-2

“Supported Serial Port Interface Standards” on page 13-3

“Supported Platforms” on page 13-3

“Using the Examples with Your Device” on page 13-3

What Is the MATLAB Serial Port Interface?
The MATLAB serial port interface provides direct access to peripheral devices
such as modems, printers, and scientific instruments that you connect to
your computer’s serial port. This interface is established through a serial
port object. The serial port object supports functions and properties that
allow you to

• Configure serial port communications

• Use serial port control pins

• Write and read data

• Use events and callbacks

• Record information to disk

Instrument Control Toolbox™ software provides additional serial port
functionality. In addition to command-line access, this toolbox has a graphical
tool called the Test & Measurement Tool, which allows you to communicate
with, configure, and transfer data with your serial device without writing
code. The Test & Measurement Tool generates MATLAB code for your
serial device that you can later reuse to communicate with your device or to
develop GUI-based applications. The toolbox includes additional serial I/O
utility functions that facilitate object creation and configuration, instrument
communication, and so on. With the toolbox you can communicate with GPIB-
or VISA-compatible instruments.

13-2

Introduction

If you want to communicate with PC-compatible data acquisition hardware
such as multifunction I/O boards, you need Data Acquisition Toolbox™
software.

For more information about these products, visit the MathWorks Web site at
http://www.mathworks.com/products.

Supported Serial Port Interface Standards
Over the years, several serial port interface standards have been developed.
These standards include RS-232, RS-422, and RS-485 - all of which are
supported by the MATLAB serial port object. Of these, the most widely used
interface standard for connecting computers to peripheral devices is RS-232.

This guide assumes you are using the RS-232 standard, discussed in
“Overview of the Serial Port” on page 13-5. Refer to your computer and device
documentation to see which interface standard you can use.

Supported Platforms
The MATLAB serial port interface is supported on:

• Linux 32-bit

• Linux 64-bit

• Mac OS X

• Mac OS X 64-bit

• Microsoft Windows 32-bit

• Microsoft Windows 64-bit

Using the Examples with Your Device
Many of the examples in this section reflect specific peripheral devices
connected to a serial port — in particular a Tektronix® TDS 210 two-channel
oscilloscope connected to the COM1 port, on a Windows platform. Therefore,
many of the string commands are specific to this instrument and platform.

13-3

http://www.mathworks.com/products

13 Serial Port I/O

If you are using a different platform, or your peripheral device is connected
to a different serial port, or if it accepts different commands, modify the
examples accordingly.

13-4

Overview of the Serial Port

Overview of the Serial Port

In this section...

“Introduction” on page 13-5

“What Is Serial Communication?” on page 13-5

“The Serial Port Interface Standard” on page 13-6

“Connecting Two Devices with a Serial Cable” on page 13-6

“Serial Port Signals and Pin Assignments” on page 13-7

“Serial Data Format” on page 13-11

“Finding Serial Port Information for Your Platform” on page 13-16

“Using Virtual USB Serial Ports” on page 13-18

“Selected Bibliography” on page 13-18

Introduction
For many serial port applications, you can communicate with your device
without detailed knowledge of how the serial port works. If your application is
straightforward, or if you are already familiar with the previously mentioned
topics, you might want to begin with “The Serial Port Session” on page 13-21
to see how to use your serial port device with MATLAB software.

What Is Serial Communication?
Serial communication is the most common low-level protocol for
communicating between two or more devices. Normally, one device is a
computer, while the other device can be a modem, a printer, another computer,
or a scientific instrument such as an oscilloscope or a function generator.

As the name suggests, the serial port sends and receives bytes of information
in a serial fashion — one bit at a time. These bytes are transmitted using
either a binary (numerical) format or a text format.

13-5

13 Serial Port I/O

The Serial Port Interface Standard
The serial port interface for connecting two devices is specified by the
TIA/EIA-232C standard published by the Telecommunications Industry
Association.

The original serial port interface standard was given by RS-232, which stands
for Recommended Standard number 232. The term RS-232 is still in popular
use, and is used in this guide when referring to a serial communication port
that follows the TIA/EIA-232 standard. RS-232 defines these serial port
characteristics:

• The maximum bit transfer rate and cable length

• The names, electrical characteristics, and functions of signals

• The mechanical connections and pin assignments

Primary communication is accomplished using three pins: the Transmit Data
pin, the Receive Data pin, and the Ground pin. Other pins are available for
data flow control, but are not required.

Other standards such as RS-485 define additional functionality such as
higher bit transfer rates, longer cable lengths, and connections to as many as
256 devices.

Connecting Two Devices with a Serial Cable
The RS-232 standard defines the two devices connected with a serial cable
as the Data Terminal Equipment (DTE) and Data Circuit-Terminating
Equipment (DCE). This terminology reflects the RS-232 origin as a standard
for communication between a computer terminal and a modem.

Throughout this guide, your computer is considered a DTE, while peripheral
devices such as modems and printers are considered DCEs. Many scientific
instruments function as DTEs.

Because RS-232 mainly involves connecting a DTE to a DCE, the pin
assignments are defined such that straight-through cabling is used, where pin
1 is connected to pin 1, pin 2 is connected to pin 2, and so on. The following
diagram shows a DTE to DCE serial connection using the transmit data (TD)
pin and the receive data (RD) pin.

13-6

Overview of the Serial Port

For more information about serial port pins, see “Serial Port Signals and Pin
Assignments” on page 13-7.

If you connect two DTEs or two DCEs using a straight serial cable, the TD
pins on each device are connected to each other, and the RD pins on each
device are connected to each other. Therefore, to connect two like devices, you
must use a null modem cable. As shown in the following diagram, null modem
cables cross the transmit and receive lines in the cable.

Note You can connect multiple RS-422 or RS-485 devices to a serial port. If
you have an RS-232/RS-485 adaptor, you can use the MATLAB serial port
object with these devices.

Serial Port Signals and Pin Assignments
Serial ports consist of two signal types: data signals and control signals. To
support these signal types, as well as the signal ground, the RS-232 standard
defines a 25-pin connection. However, most Windows and UNIX platforms
use a 9-pin connection. In fact, only three pins are required for serial port
communications: one for receiving data, one for transmitting data, and one
for the signal ground.

13-7

13 Serial Port I/O

The following diagram shows the pin assignment scheme for a 9-pin male
connector on a DTE.

The pins and signals associated with the 9-pin connector are described in the
following table. Refer to the RS-232 standard for a description of the signals
and pin assignments used for a 25-pin connector.

Serial Port Pin and Signal Assignments

Pin Label Signal Name Signal Type

1 CD Carrier Detect Control

2 RD Received Data Data

3 TD Transmitted Data Data

4 DTR Data Terminal Ready Control

5 GND Signal Ground Ground

6 DSR Data Set Ready Control

7 RTS Request to Send Control

8 CTS Clear to Send Control

9 RI Ring Indicator Control

The term data set is synonymous with modem or device, while the term data
terminal is synonymous with computer.

Note The serial port pin and signal assignments are with respect to the DTE.
For example, data is transmitted from the TD pin of the DTE to the RD pin
of the DCE.

13-8

Overview of the Serial Port

Signal States
Signals can be in either an active state or an inactive state. An active state
corresponds to the binary value 1, while an inactive state corresponds to the
binary value 0. An active signal state is often described as logic 1, on, true,
or a mark. An inactive signal state is often described as logic 0, off, false, or
a space.

For data signals, the on state occurs when the received signal voltage is more
negative than -3 volts, while the off state occurs for voltages more positive
than 3 volts. For control signals, the on state occurs when the received signal
voltage is more positive than 3 volts, while the off state occurs for voltages
more negative than -3 volts. The voltage between -3 volts and +3 volts is
considered a transition region, and the signal state is undefined.

To bring the signal to the on state, the controlling device unasserts (or lowers)
the value for data pins and asserts (or raises) the value for control pins.
Conversely, to bring the signal to the off state, the controlling device asserts
the value for data pins and unasserts the value for control pins.

The following diagram shows the on and off states for a data signal and for
a control signal.

The Data Pins
Most serial port devices support full-duplex communication meaning that
they can send and receive data at the same time. Therefore, separate pins
are used for transmitting and receiving data. For these devices, the TD, RD,

13-9

13 Serial Port I/O

and GND pins are used. However, some types of serial port devices support
only one-way or half-duplex communications. For these devices, only the TD
and GND pins are used. This guide assumes that a full-duplex serial port
is connected to your device.

The TD pin carries data transmitted by a DTE to a DCE. The RD pin carries
data that is received by a DTE from a DCE.

The Control Pins
The control pins of a 9-pin serial port are used to determine the presence of
connected devices and control the flow of data. The control pins include

• “The RTS and CTS Pins” on page 13-10

• “The DTR and DSR Pins” on page 13-10

• “The CD and RI Pins” on page 13-11

The RTS and CTS Pins. The RTS and CTS pins are used to signal
whether the devices are ready to send or receive data. This type of data
flow control—called hardware handshaking—is used to prevent data loss
during transmission. When enabled for both the DTE and DCE, hardware
handshaking using RTS and CTS follows these steps:

1 The DTE asserts the RTS pin to instruct the DCE that it is ready to receive
data.

2 The DCE asserts the CTS pin indicating that it is clear to send data over
the TD pin. If data can no longer be sent, the CTS pin is unasserted.

3 The data is transmitted to the DTE over the TD pin. If data can no
longer be accepted, the RTS pin is unasserted by the DTE and the data
transmission is stopped.

To enable hardware handshaking in MATLAB software, see “Controlling the
Flow of Data: Handshaking” on page 13-68.

The DTR and DSR Pins. Many devices use the DSR and DTR pins to signal if
they are connected and powered. Signaling the presence of connected devices
using DTR and DSR follows these steps:

13-10

Overview of the Serial Port

1 The DTE asserts the DTR pin to request that the DCE connect to the
communication line.

2 The DCE asserts the DSR pin to indicate it is connected.

3 DCE unasserts the DSR pin when it is disconnected from the
communication line.

The DTR and DSR pins were originally designed to provide an alternative
method of hardware handshaking. However, the RTS and CTS pins are
usually used in this way, and not the DSR and DTR pins. Refer to your device
documentation to determine its specific pin behavior.

The CD and RI Pins. The CD and RI pins are typically used to indicate the
presence of certain signals during modem-modem connections.

A modem uses a CD pin to signal that it has made a connection with another
modem, or has detected a carrier tone. CD is asserted when the DCE is
receiving a signal of a suitable frequency. CD is unasserted if the DCE is not
receiving a suitable signal.

The RI pin is used to indicate the presence of an audible ringing signal. RI is
asserted when the DCE is receiving a ringing signal. RI is unasserted when
the DCE is not receiving a ringing signal (e.g., it is between rings).

Serial Data Format
The serial data format includes one start bit, between five and eight data bits,
and one stop bit. A parity bit and an additional stop bit might be included in
the format as well. The following diagram illustrates the serial data format.

The following notation expresses the format for serial port data:

number of data bits - parity type - number of stop bits

13-11

13 Serial Port I/O

For example, 8-N-1 is interpreted as eight data bits, no parity bit, and one
stop bit, while 7-E-2 is interpreted as seven data bits, even parity, and two
stop bits.

The data bits are often referred to as a character because these bits usually
represent an ASCII character. The remaining bits are called framing bits
because they frame the data bits.

Bytes Versus Values
A byte is the collection of bits that comprise the serial data format. At first,
this term might seem inaccurate because a byte is 8 bits and the serial data
format can range between 7 bits and 12 bits. However, when serial data is
stored on your computer, the framing bits are stripped away, and only the
data bits are retained. Moreover, eight data bits are always used regardless
of the number of data bits specified for transmission, with the unused bits
assigned a value of 0.

When reading or writing data, you might need to specify a value, which
can consist of one or more bytes. For example, if you read one value from a
device using the int32 format, that value consists of four bytes. For more
information about reading and writing values, see “Writing and Reading
Data” on page 13-34.

Synchronous and Asynchronous Communication
The RS-232 standard supports two types of communication protocols:
synchronous and asynchronous.

Using the synchronous protocol, all transmitted bits are synchronized to a
common clock signal. The two devices initially synchronize themselves to
each other, and continually send characters to stay synchronized. Even when
actual data is not really being sent, a constant flow of bits allows each device
to know where the other is at any given time. That is, each bit that is sent is
either actual data or an idle character. Synchronous communications allows
faster data transfer rates than asynchronous methods, because additional bits
to mark the beginning and end of each data byte are not required.

13-12

Overview of the Serial Port

Using the asynchronous protocol, each device uses its own internal clock,
resulting in bytes that are transferred at arbitrary times. So, instead of using
time as a way to synchronize the bits, the data format is used.

In particular, the data transmission is synchronized using the start bit
of the word, while one or more stop bits indicate the end of the word.
The requirement to send these additional bits causes asynchronous
communications to be slightly slower than synchronous. However, it has the
advantage that the processor does not have to deal with the additional idle
characters. Most serial ports operate asynchronously.

Note When used in this guide, the terms synchronous and asynchronous
refer to whether read or write operations block access to the MATLAB
command line. For more information, see “Controlling Access to the MATLAB
Command Line” on page 13-35.

How Are the Bits Transmitted?
By definition, serial data is transmitted one bit at a time. The order in which
the bits are transmitted is:

1 The start bit is transmitted with a value of 0.

2 The data bits are transmitted. The first data bit corresponds to the least
significant bit (LSB), while the last data bit corresponds to the most
significant bit (MSB).

3 The parity bit (if defined) is transmitted.

4 One or two stop bits are transmitted, each with a value of 1.

The baud rate is the number of bits transferred per second. The transferred
bits include the start bit, the data bits, the parity bit (if defined), and the
stop bits.

Start and Stop Bits
As described in “Synchronous and Asynchronous Communication” on page
13-12, most serial ports operate asynchronously. This means that the

13-13

13 Serial Port I/O

transmitted byte must be identified by start and stop bits. The start bit
indicates when the data byte is about to begin; the stop bit(s) indicate(s) when
the data byte has been transferred. The process of identifying bytes with the
serial data format follows these steps:

1 When a serial port pin is idle (not transmitting data), it is in an on state.

2 When data is about to be transmitted, the serial port pin switches to an
off state due to the start bit.

3 The serial port pin switches back to an on state due to the stop bit(s). This
indicates the end of the byte.

Data Bits
The data bits transferred through a serial port might represent device
commands, sensor readings, error messages, and so on. The data can be
transferred as either binary data or ASCII data.

Most serial ports use between five and eight data bits. Binary data is typically
transmitted as eight bits. Text-based data is transmitted as either seven bits
or eight bits. If the data is based on the ASCII character set, a minimum
of seven bits is required because there are 27 or 128 distinct characters. If
an eighth bit is used, it must have a value of 0. If the data is based on the
extended ASCII character set, eight bits must be used because there are 28 or
256 distinct characters.

The Parity Bit
The parity bit provides simple error (parity) checking for the transmitted
data. The following table shows the types of parity checking.

Parity Types

Parity Type Description

Even The data bits plus the parity bit result in an even number
of 1s.

Mark The parity bit is always 1.

13-14

Overview of the Serial Port

Parity Types (Continued)

Parity Type Description

Odd The data bits plus the parity bit result in an odd number of
1s.

Space The parity bit is always 0.

Mark and space parity checking are seldom used because they offer minimal
error detection. You might choose to not use parity checking at all.

The parity checking process follows these steps:

1 The transmitting device sets the parity bit to 0 or to 1, depending on the
data bit values and the type of parity-checking selected.

2 The receiving device checks if the parity bit is consistent with the
transmitted data. If it is, the data bits are accepted. If it is not, an error
is returned.

Note Parity checking can detect only 1-bit errors. Multiple-bit errors can
appear as valid data.

For example, suppose the data bits 01110001 are transmitted to your
computer. If even parity is selected, the parity bit is set to 0 by the
transmitting device to produce an even number of 1s. If odd parity is selected,
the parity bit is set to 1 by the transmitting device to produce an odd number
of 1s.

13-15

13 Serial Port I/O

Finding Serial Port Information for Your Platform
This section describes the ways to find serial port information for Windows
and UNIX platforms.

Note Your operating system provides default values for all serial port
settings. However, these settings are overridden by your MATLAB code, and
will have no effect on your serial port application.

Microsoft Windows Platform
You can access serial port information through the System Properties
dialog. To access this on a Windows XP platform,

1 Right-click My Computer on the desktop, and select Properties.

2 In the System Properties dialog, click the Hardware tab.

3 Click Device Manager.

4 In the Device Manager dialog, expand the Ports node.

5 Double-click the Communications Port (COM1) node.

6 Select the Port Settings tab.

13-16

Overview of the Serial Port

MATLAB displays the following Ports dialog box.

UNIX Platform
To find serial port information for UNIX platforms, you need to know the
serial port names. These names might vary between different operating
systems.

On a Linux platform, serial port devices are typically named ttyS0, ttyS1, etc.
Use the setserial command to display or configure serial port information.
For example, to display which ports are available:

setserial -bg /dev/ttyS*
/dev/ttyS0 at 0x03f8 (irq = 4) is a 16550A
/dev/ttyS1 at 0x02f8 (irq = 3) is a 16550A

13-17

13 Serial Port I/O

To display detailed information about ttyS0:

setserial -ag /dev/ttyS0
/dev/ttyS0, Line 0, UART: 16550A, Port: 0x03f8, IRQ: 4

Baud_base: 115200, close_delay: 50, divisor: 0
closing_wait: 3000, closing_wait2: infinte
Flags: spd_normal skip_test session_lockout

Note If the setserial -ag command does not work, make sure that you
have read and write permission for the port.

For all supported UNIX platforms, use the stty command to display or
configure serial port information. For example, to display serial port
properties for ttyS0, enter:

stty -a < /dev/ttyS0

To configure the baud rate to 4800 bits per second, enter:

stty speed 4800 < /dev/ttyS0 > /dev/ttyS0

Using Virtual USB Serial Ports
If you have devices that present themselves as serial ports on your operating
system, you can use them as virtual USB serial ports in MATLAB. An
example of such devices would be a USB Serial Dongle. For Bluetooth®

devices, you can use the Bluetooth support in the Instrument Control Toolbox.
See “Bluetooth Interface Overview” for more information.

MATLAB can communicate with these devices as long as the serial drivers
provided by the device vendor are able to emulate the native hardware.
Certain software, like HyperTerminal, does not require the device driver to
fully implement and support the native hardware.

Selected Bibliography

[1] TIA/EIA-232-F, Interface Between Data Terminal Equipment and Data
Circuit-Terminating Equipment Employing Serial Binary Data Interchange.

13-18

Overview of the Serial Port

[2] Jan Axelson, Serial Port Complete, Lakeview Research, Madison, WI,
1998.

[3] Instrument Communication Handbook, IOTech, Inc., Cleveland, OH, 1991.

[4] TDS 200-Series Two Channel Digital Oscilloscope Programmer Manual,
Tektronix, Inc., Wilsonville, OR.

[5] Courier High Speed Modems User’s Manual, U.S. Robotics, Inc., Skokie,
IL, 1994.

13-19

13 Serial Port I/O

Getting Started with Serial I/O

In this section...

“Example: Getting Started” on page 13-20

“The Serial Port Session” on page 13-21

“Configuring and Returning Properties” on page 13-22

Example: Getting Started
This example illustrates some basic serial port commands.

Note This example is shown on a Windows platform.

If you have a device connected to the serial port COM1 and configured for a
baud rate of 4800, execute the following example.

s = serial('COM1');
set(s,'BaudRate',4800);
fopen(s);
fprintf(s,'*IDN?')
out = fscanf(s);
fclose(s)
delete(s)
clear s

The *IDN? command queries the device for identification information, which
is returned to out. If your device does not support this command, or if it is
connected to a different serial port, modify the previous example accordingly.

Note *IDN? is one of the commands supported by the Standard Commands
for Programmable Instruments (SCPI) language, which is used by many
modern devices. Refer to your device documentation to see if it supports the
SCPI language.

13-20

Getting Started with Serial I/O

The Serial Port Session
This example describes the steps you use to perform any serial port task
from beginning to end.

The serial port session comprises all the steps you are likely to take when
communicating with a device connected to a serial port. These steps are:

1 Create a serial port object — Create a serial port object for a specific serial
port using the serial creation function.

Configure properties during object creation if necessary. In particular,
you might want to configure properties associated with serial port
communications such as the baud rate, the number of data bits, and so on.

2 Connect to the device — Connect the serial port object to the device using
the fopen function.

After the object is connected, alter the necessary device settings by
configuring property values, read data, and write data.

3 Configure properties — To establish the desired serial port object behavior,
assign values to properties using the set function or dot notation.

In practice, you can configure many of the properties at any time including
during, or just after, object creation. Conversely, depending on your device
settings and the requirements of your serial port application, you might be
able to accept the default property values and skip this step.

4 Write and read data — Write data to the device using the fprintf or
fwrite function, and read data from the device using the fgetl, fgets,
fread, fscanf, or readasync function.

The serial port object behaves according to the previously configured or
default property values.

5 Disconnect and clean up — When you no longer need the serial port object,
disconnect it from the device using the fclose function, remove it from
memory using the delete function, and remove it from the MATLAB
workspace using the clear command.

13-21

13 Serial Port I/O

The serial port session is reinforced in many of the serial port documentation
examples. To see a basic example that uses the steps shown above, see
“Example: Getting Started” on page 13-20.

Configuring and Returning Properties
This example describes how you display serial port property names and
property values, and how you assign values to properties.

You establish the desired serial port object behavior by configuring property
values. You can display or configure property values using the set function,
the get function, or dot notation.

Displaying Property Names and Property Values
After you create the serial port object, use the set function to display all the
configurable properties to the command line. Additionally, if a property has a
finite set of string values, set also displays these values.

s = serial('COM1');
set(s)

ByteOrder: [{littleEndian} | bigEndian]
BytesAvailableFcn
BytesAvailableFcnCount
BytesAvailableFcnMode: [{terminator} | byte]
ErrorFcn
InputBufferSize
Name
OutputBufferSize
OutputEmptyFcn
RecordDetail: [{compact} | verbose]
RecordMode: [{overwrite} | append | index]
RecordName
Tag
Timeout
TimerFcn
TimerPeriod
UserData

SERIAL specific properties:

13-22

Getting Started with Serial I/O

BaudRate
BreakInterruptFcn
DataBits
DataTerminalReady: [{on} | off]
FlowControl: [{none} | hardware | software]
Parity: [{none} | odd | even | mark | space]
PinStatusFcn
Port
ReadAsyncMode: [{continuous} | manual]
RequestToSend: [{on} | off]
StopBits
Terminator

Use the get function to display one or more properties and their current
values to the command line. To display all properties and their current values:

get(s)
ByteOrder = littleEndian
BytesAvailable = 0
BytesAvailableFcn =
BytesAvailableFcnCount = 48
BytesAvailableFcnMode = terminator
BytesToOutput = 0
ErrorFcn =
InputBufferSize = 512
Name = Serial-COM1
OutputBufferSize = 512
OutputEmptyFcn =
RecordDetail = compact
RecordMode = overwrite
RecordName = record.txt
RecordStatus = off
Status = closed
Tag =
Timeout = 10
TimerFcn =
TimerPeriod = 1
TransferStatus = idle
Type = serial
UserData = []

13-23

13 Serial Port I/O

ValuesReceived = 0
ValuesSent = 0

SERIAL specific properties:
BaudRate = 9600
BreakInterruptFcn =
DataBits = 8
DataTerminalReady = on
FlowControl = none
Parity = none
PinStatus = [1x1 struct]
PinStatusFcn =
Port = COM1
ReadAsyncMode = continuous
RequestToSend = on
StopBits = 1
Terminator = LF

To display the current value for one property, supply the property name to
get.

get(s,'OutputBufferSize')
ans =

512

To display the current values for multiple properties, include the property
names as elements of a cell array.

get(s,{'Parity','TransferStatus'})
ans =

'none' 'idle'

Use the dot notation to display a single property value.

s.Parity
ans =
none

Configuring Property Values
You can configure property values using the set function:

13-24

Getting Started with Serial I/O

set(s,'BaudRate',4800);

or the dot notation:

s.BaudRate = 4800;

To configure values for multiple properties, supply multiple property
name/property value pairs to set.

set(s,'DataBits',7,'Name','Test1-serial')

Note that you can configure only one property value at a time using the dot
notation.

In practice, you can configure many of the properties at any time while the
serial port object exists — including during object creation. However, some
properties are not configurable while the object is connected to the device or
when recording information to disk. For information about when a property is
configurable, see “Property Reference” on page 13-82.

Specifying Property Names
Serial port property names are presented using mixed case. While this
makes property names easier to read, use any case you want when specifying
property names. Additionally, you need use only enough letters to identify
the property name uniquely, so you can abbreviate most property names. For
example, you can configure the BaudRate property any of these ways:

set(s,'BaudRate',4800)
set(s,'baudrate',4800)
set(s,'BAUD',4800)

When you include property names in a file, you should use the full property
name. This practice can prevent problems with future releases of MATLAB
software if a shortened name is no longer unique because of the addition of
new properties.

13-25

13 Serial Port I/O

Default Property Values
Whenever you do not explicitly define a value for a property, the default value
is used. All configurable properties have default values.

Note Your operating system provides default values for all serial port
settings such as the baud rate. However, these settings are overridden by
your MATLAB code and have no effect on your serial port application.

If a property has a finite set of string values, the default value is enclosed by
{}. For example, the default value for the Parity property is none.

set(s,'Parity')
[{none} | odd | even | mark | space]

You can find the default value for any property in the property reference
pages.

13-26

Creating a Serial Port Object

Creating a Serial Port Object

In this section...

“Overview of a Serial Port Object” on page 13-27

“Configuring Properties During Object Creation” on page 13-29

“The Serial Port Object Display” on page 13-29

“Creating an Array of Serial Port Objects” on page 13-30

Overview of a Serial Port Object
The serial function requires the name of the serial port connected to your
device as an input argument. Additionally, you can configure property values
during object creation. To create a serial port object associated with the
serial port enter:

s = serial('port');

This creates a serial port object associated with the serial port specified by
'port'. If 'port' does not exist, or if it is in use, you will not be able to
connect the serial port object to the device. 'port' object name will depend
upon the platform that the serial port is on. The Instrument Control Toolbox
function

instrhwinfo('serial')

provides a list of available serial ports. This list is an example of serial
constructors on different platforms:

Platform Serial Constructor

Linux 32 and 64-bit
serial('/dev/ttyS0');

Mac OS X
and Mac OS X 64-bit serial('/dev/tty.KeySerial1');

Microsoft Windows 32 and 64-bit
serial('com1');

Sun™ Solaris™ 64-bit
serial('/dev/term/a');

13-27

13 Serial Port I/O

The serial port object s now exists in the MATLAB workspace. You can
display the class of s with the whos command.

whos s
Name Size Bytes Class

s 1x1 512 serial object

Grand total is 11 elements using 512 bytes

Note The first time you try to access a serial port in MATLAB using the s =
serial('port') call, make sure that the port is free and is not already open in
any other application. If the port is open in another application, MATLAB
cannot access it. Once you have accessed in MATLAB, you can open the same
port in other applications and MATLAB will continue to use it along with any
other application that has it open as well.

Once the serial port object is created, the following properties are
automatically assigned values. These general-purpose properties provide
descriptive information about the serial port object based on the object type
and the serial port.

Descriptive General Purpose Properties

Property Name Description

Name Specify a descriptive name for the serial port object

Port Indicate the platform-specific serial port name

Type Indicate the object type

Display the values of these properties for s with the get function. On a
Windows platform, it will look like this:

get(s,{'Name','Port','Type'})
ans =

'Serial-COM1' 'COM1' 'serial'

13-28

Creating a Serial Port Object

Configuring Properties During Object Creation
You can configure serial port properties during object creation. serial
accepts property names and property values in the same format as the set
function. For example, you can specify property name/property value pairs.

s = serial('port','BaudRate',4800,'Parity','even');

If you specify an invalid property name, the object is not created. However,
if you specify an invalid value for some properties (for example, BaudRate is
set to 50), the object might be created but you are not informed of the invalid
value until you connect the object to the device with the fopen function.

The Serial Port Object Display
The serial port object provides you with a convenient display that summarizes
important configuration and state information. You can invoke the display
summary these three ways:

• Type the serial port object variable name at the command line.

• Exclude the semicolon when creating a serial port object.

• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by
right-clicking an instrument object and selecting Display Summary from
the context menu.

The display summary for the serial port object s on a Windows platform is:

Serial Port Object : Serial-COM1

Communication Settings
Port: COM1
BaudRate: 9600
Terminator: 'LF'

Communication State
Status: closed
RecordStatus: off

13-29

13 Serial Port I/O

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

Creating an Array of Serial Port Objects
In MATLAB software, you can create an array from existing variables by
concatenating those variables together. The same is true for serial port
objects. For example, suppose you create the serial port objects s1 and s2 on
a Windows platform.

s1 = serial('COM1');
s2 = serial('COM2');

You can now create a serial port object array consisting of s1 and s2 using the
usual MATLAB syntax. To create the row array x, enter:

x = [s1 s2]

Instrument Object Array

Index: Type: Status: Name:
1 serial closed Serial-COM1
2 serial closed Serial-COM2

To create the column array y, enter:

y = [s1;s2];

Note that you cannot create a matrix of serial port objects. For example,
you cannot create the matrix:

z = [s1 s2;s1 s2];

??? Error using ==> serial/vertcat

Only a row or column vector of instrument objects can be created.

13-30

Creating a Serial Port Object

Depending on your application, you might want to pass an array of serial port
objects to a function. For example, to configure the baud rate and parity
for s1 and s2 using one call to set:

set(x,'BaudRate',19200,'Parity','even')

13-31

13 Serial Port I/O

Connecting to the Device
Before you can use the serial port object to write or read data, you must
connect it to your device via the serial port specified in the serial function.
You connect a serial port object to the device with the fopen function.

fopen(s)

Some properties are read only while the serial port object is connected
and must be configured before using fopen. Examples include the
InputBufferSize and the OutputBufferSize properties. To determine when
you can configure a property, see “Property Reference” on page 13-82.

Note You can create any number of serial port objects, but you can connect
only one serial port object per MATLAB session to a given serial port at a time.
However, the serial port is not locked by the session, so other applications or
other instances of MATLAB software can access the same serial port, which
could result in a conflict, with unpredictable results.

You can examine the Status property to verify that the serial port object is
connected to the device.

s.Status
ans =
open

As shown in the following illustration, the connection between the serial port
object and the device is complete; data is readable and writable.

13-32

Configuring Communication Settings

Configuring Communication Settings
Before you can write or read data, both the serial port object and the
device must have identical communication settings. Configuring serial port
communications involves specifying values for properties that control the baud
rate and the serial data format. The following table describes these properties.

Communication Properties

Property Name Description

BaudRate Specify the rate at which bits are transmitted

DataBits Specify the number of data bits to transmit

Parity Specify the type of parity checking

StopBits Specify the number of bits used to indicate the end of
a byte

Terminator Specify the terminator character

Note If the serial port object and the device communication settings are not
identical, data is not readable or writable.

Refer to the device documentation for an explanation of its supported
communication settings.

13-33

13 Serial Port I/O

Writing and Reading Data

In this section...

“Before You Begin” on page 13-34

“Example — Introduction to Writing and Reading Data” on page 13-34

“Controlling Access to the MATLAB Command Line” on page 13-35

“Writing Data” on page 13-36

“Reading Data” on page 13-42

“Example — Writing and Reading Text Data” on page 13-48

“Example — Parsing Input Data Using textscan” on page 13-50

“Example — Reading Binary Data” on page 13-51

Before You Begin
For many serial port applications, there are three important questions that
you should consider when writing or reading data:

• Will the read or write function block access to the MATLAB command line?

• Is the data to be transferred binary (numerical) or text?

• Under what conditions will the read or write operation complete?

For write operations, these questions are answered in “Writing Data” on
page 13-36. For read operations, these questions are answered in “Reading
Data” on page 13-42.

Note All the examples shown below are based on a Windows 32-bit platform.
Refer to “Overview of a Serial Port Object” on page 13-27 section for
information about other platforms.

Example — Introduction to Writing and Reading Data
Suppose you want to return identification information for a Tektronix TDS
210 two-channel oscilloscope connected to the serial port COM1 on a Windows

13-34

Writing and Reading Data

platform. This requires writing the *IDN? command to the instrument using
the fprintf function, and reading back the result of that command using
the fscanf function.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
out = fscanf(s)

The resulting identification information is:

out =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

End the serial port session.

fclose(s)
delete(s)
clear s

Controlling Access to the MATLAB Command Line
You control access to the MATLAB command line by specifying whether a
read or write operation is synchronous or asynchronous.

A synchronous operation blocks access to the command line until the read or
write function completes execution. An asynchronous operation does not block
access to the command line, and you can issue additional commands while the
read or write function executes in the background.

The terms synchronous and asynchronous are often used to describe how the
serial port operates at the hardware level. The RS-232 standard supports an
asynchronous communication protocol. Using this protocol, each device uses
its own internal clock. The data transmission is synchronized using the start
bit of the bytes, while one or more stop bits indicate the end of the byte. For
more information on start bits and stop bits, see “Serial Data Format” on page
13-11. The RS-232 standard also supports a synchronous mode where all
transmitted bits are synchronized to a common clock signal.

At the hardware level, most serial ports operate asynchronously. However,
using the default behavior for many of the read and write functions, you can
mimic the operation of a synchronous serial port.

13-35

13 Serial Port I/O

Note When used in this guide, the terms synchronous and asynchronous
refer to whether read or write operations block access to the MATLAB
command-line. In other words, these terms describe how the software
behaves, and not how the hardware behaves.

The two main advantages of writing or reading data asynchronously are:

• You can issue another command while the write or read function is
executing.

• You can use all supported callback properties (see “Events and Callbacks”
on page 13-55).

For example, because serial ports have separate read and write pins, you
can simultaneously read and write data. This is illustrated in the following
diagram.

Writing Data
This section describes writing data to your serial port device in three parts:

• “The Output Buffer and Data Flow” on page 13-37 describes the flow of
data from MATLAB software to the device.

• “Writing Text Data” on page 13-39 describes how to write text data (string
commands) to the device.

• “Writing Binary Data” on page 13-41 describes how to write binary
(numerical) data to the device.

The following table shows the functions associated with writing data.

13-36

Writing and Reading Data

Functions Associated with Writing Data

Function Name Description

fprintf Write text to the device

fwrite Write binary data to the device

stopasync Stop asynchronous read and write operations

The following table shows the properties associated with writing data.

Properties Associated with Writing Data

Property Name Description

BytesToOutput Number of bytes currently in the output buffer

OutputBufferSize Size of the output buffer in bytes

Timeout Waiting time to complete a read or write operation

TransferStatus Indicate if an asynchronous read or write operation
is in progress

ValuesSent Total number of values written to the device

The Output Buffer and Data Flow
The output buffer is computer memory allocated by the serial port object
to store data that is to be written to the device. When writing data to your
device, the data flow follows these two steps:

1 The data specified by the write function is sent to the output buffer.

2 The data in the output buffer is sent to the device.

The OutputBufferSize property specifies the maximum number of bytes that
you can store in the output buffer. The BytesToOutput property indicates
the number of bytes currently in the output buffer. The default values for
these properties are:

s = serial('COM1');
get(s,{'OutputBufferSize','BytesToOutput'})

13-37

13 Serial Port I/O

ans =
[512] [0]

If you attempt to write more data than can fit in the output buffer, an error
is returned and no data is written.

For example, suppose you write the string command *IDN? to the TDS 210
oscilloscope using the fprintf function. As shown in the following diagram,
the string is first written to the output buffer as six values.

The *IDN? command consists of six values because the terminator is
automatically written. Moreover, the default data format for the fprintf
function specifies that one value corresponds to one byte. For more
information about bytes and values, see “Bytes Versus Values” on page
13-12. fprintf and the terminator are discussed in “Writing Text Data” on
page 13-39.

As shown in the following diagram, after the string is written to the output
buffer, it is then written to the device via the serial port.

13-38

Writing and Reading Data

Writing Text Data
You use the fprintf function to write text data to the device. For many
devices, writing text data means writing string commands that change device
settings, prepare the device to return data or status information, and so on.

For example, the Display:Contrast command changes the display contrast
of the oscilloscope.

s = serial('COM1');
fopen(s)
fprintf(s,'Display:Contrast 45')

By default, fprintf writes data using the %s\n format because many serial
port devices accept only text-based commands. However, you can specify
many other formats, as described in the fprintf reference pages.

You can verify the number of values sent to the device with the ValuesSent
property.

s.ValuesSent
ans =

20

Note that the ValuesSent property value includes the terminator because
each occurrence of \n in the command sent to the device is replaced with the
Terminator property value.

s.Terminator

13-39

13 Serial Port I/O

ans =
LF

The default value of Terminator is the linefeed character. The terminator
required by your device will be described in its documentation.

Synchronous Versus Asynchronous Write Operations. By default,
fprintf operates synchronously and blocks the MATLAB command line until
execution completes. To write text data asynchronously to the device, you
must specify async as the last input argument to fprintf.

fprintf(s,'Display:Contrast 45','async')

Asynchronous operations do not block access to the MATLAB command line.
Additionally, while an asynchronous write operation is in progress, you can:

• Execute an asynchronous read operation because serial ports have separate
pins for reading and writing

• Make use of all supported callback properties

You can determine which asynchronous operations are in progress with the
TransferStatus property. If no asynchronous operations are in progress,
TransferStatus is idle.

s.TransferStatus
ans =
idle

Completing a Write Operation with fprintf. A synchronous or
asynchronous write operation using fprintf completes when:

• The specified data is written.

• The time specified by the Timeout property passes.

Stop an asynchronous write operation with the stopasync function.

Rules for Writing the Terminator. The Terminator property value replaces
all occurrences of \n in cmd. Therefore, when you use the default format %s\n,
all commands written to the device end with this property value. Refer to
your device documentation for the terminator required by your device.

13-40

Writing and Reading Data

Writing Binary Data
You use the fwrite function to write binary data to the device. Writing
binary data means writing numerical values. A typical application for writing
binary data involves writing calibration data to an instrument such as an
arbitrary waveform generator.

Note Some serial port devices accept only text-based commands. These
commands might use the SCPI language or some other vendor-specific
language. Therefore, you might need to use the fprintf function for all
write operations.

By default, fwrite translates values using the uchar precision. However,
you can specify many other precisions as described in the reference pages
for this function.

By default, fwrite operates synchronously. To write binary data
asynchronously to the device, you must specify async as the last input
argument to fwrite. For more information about synchronous and
asynchronous write operations, see “Writing Text Data” on page 13-39. For a
description of the rules used by fwrite to complete a write operation, refer
to its reference pages.

Troubleshooting Common Errors
Use this table to identify common fprintf errors.

Error Occurs when Troubleshooting

??? Error using
==> serial.fwrite
at 199 OBJ must
be connected to
the hardware
with FOPEN.

You perform a write
operation and the serial
port object is not connected
to the device.

Use fopen to establish a
connection to the device.

??? Error using
==> serial.fwrite
at 199 The
number of bytes

The output buffer is not
able to hold all the data to
be written.

Specify the size of the
output buffer with

13-41

13 Serial Port I/O

Error Occurs when Troubleshooting

written must
be less than
or equal to
OutputBufferSize-BytesToOutput.

the OutputBufferSize
property.

??? Error using
==> serial.fwrite
at 192 FWRITE
cannot be called.
The FlowControl
property is set
to ’hardware’
and the Clear
To Send (CTS) pin
is high. This could
indicate that the
serial device may
not be turned
on, may not be
connected, or does
not use hardware
handshaking

• You set the
flowcontrol property
on a serial object to
hardware.

• The device is either
not connected or a
connected device is not
asserting that is ready
to receive data.

Check your remote device
status and flow control
settings to see if hardware
flow control is causing
MATLAB errors.

Reading Data
This section describes reading data from your serial port device in three parts:

• “The Input Buffer and Data Flow” on page 13-43 describes the flow of data
from the device to MATLAB software.

• “Reading Text Data” on page 13-45 describes how to read from the device,
and format the data as text.

• “Reading Binary Data” on page 13-47 describes how to read binary
(numerical) data from the device.

The following table shows the functions associated with reading data.

13-42

Writing and Reading Data

Functions Associated with Reading Data

Function
Name Description

fgetl Read one line of text from the device and discard the
terminator

fgets Read one line of text from the device and include the
terminator

fread Read binary data from the device

fscanf Read data from the device and format as text

readasync Read data asynchronously from the device

stopasync Stop asynchronous read and write operations

The following table shows the properties associated with reading data.

Properties Associated with Reading Data

Property Name Description

BytesAvailable Number of bytes available in the input buffer

InputBufferSize Size of the input buffer in bytes

ReadAsyncMode Specify whether an asynchronous read operation is
continuous or manual

Timeout Waiting time to complete a read or write operation

TransferStatus Indicate if an asynchronous read or write operation is
in progress

ValuesReceived Total number of values read from the device

The Input Buffer and Data Flow
The input buffer is computer memory allocated by the serial port object to
store data that is to be read from the device. When reading data from your
device, the data flow follows these two steps:

1 The data read from the device is stored in the input buffer.

13-43

13 Serial Port I/O

2 The data in the input buffer is returned to the MATLAB variable specified
by the read function.

The InputBufferSize property specifies the maximum number of bytes that
you can store in the input buffer. The BytesAvailable property indicates the
number of bytes currently available to be read from the input buffer. The
default values for these properties are:

s = serial('COM1');
get(s,{'InputBufferSize','BytesAvailable'})
ans =

[512] [0]

If you attempt to read more data than can fit in the input buffer, an error is
returned and no data is read.

For example, suppose you use the fscanf function to read the text-based
response of the *IDN? command previously written to the TDS 210
oscilloscope. As shown in the following diagram, the text data is first read
into the input buffer via the serial port.

Note that for a given read operation, you might not know the number of
bytes returned by the device. Therefore, you might need to preset the
InputBufferSize property to a sufficiently large value before connecting
the serial port object.

As shown in the following diagram, after the data is stored in the input buffer,
it is then transferred to the output variable specified by fscanf.

13-44

Writing and Reading Data

Reading Text Data
You use the fgetl, fgets, and fscanf functions to read data from the device,
and format the data as text.

For example, suppose you want to return identification information for the
oscilloscope. This requires writing the *IDN? command to the instrument, and
then reading back the result of that command.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
out = fscanf(s)
out =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

By default, fscanf reads data using the %c format because the data returned
by many serial port devices is text based. However, you can specify many
other formats as described in the fscanf reference pages.

You can verify the number of values read from the device—including the
terminator—with the ValuesReceived property.

s.ValuesReceived
ans =

56

13-45

13 Serial Port I/O

Synchronous Versus Asynchronous Read Operations. You specify
whether read operations are synchronous or asynchronous with the
ReadAsyncMode property. You can configure ReadAsyncMode to continuous or
manual.

If ReadAsyncMode is continuous (the default value), the serial port object
continuously queries the device to determine if data is available to be read. If
data is available, it is asynchronously stored in the input buffer. To transfer
the data from the input buffer to MATLAB, use one of the synchronous
(blocking) read functions such as fgetl or fscanf. If data is available in the
input buffer, these functions return quickly.

s.ReadAsyncMode = 'continuous';
fprintf(s,'*IDN?')
s.BytesAvailable
ans =

56
out = fscanf(s);

If ReadAsyncMode is manual, the serial port object does not continuously
query the device to determine if data is available to be read. To read data
asynchronously, use the readasync function. Then use one of the synchronous
read functions to transfer data from the input buffer to MATLAB.

s.ReadAsyncMode = 'manual';
fprintf(s,'*IDN?')
s.BytesAvailable
ans =

0
readasync(s)
s.BytesAvailable
ans =

56
out = fscanf(s);

Asynchronous operations do not block access to the MATLAB command line.
Additionally, while an asynchronous read operation is in progress, you can:

• Execute an asynchronous write operation because serial ports have
separate pins for reading and writing

13-46

Writing and Reading Data

• Make use of all supported callback properties

You can determine which asynchronous operations are in progress with the
TransferStatus property. If no asynchronous operations are in progress,
then TransferStatus is idle.

s.TransferStatus
ans =
idle

Rules for Completing a Read Operation with fscanf. A read operation
with fscanf blocks access to the MATLAB command line until:

• The terminator specified by the Terminator property is read.

• The time specified by the Timeout property passes.

• The specified number of values specified is read.

• The input buffer is filled.

Reading Binary Data
You use the fread function to read binary data from the device. Reading
binary data means that you return numerical values to MATLAB.

For example, suppose you want to return the cursor and display settings for
the oscilloscope. This requires writing the CURSOR? and DISPLAY? commands
to the instrument, and then reading back the results of those commands.

s = serial('COM1');
fopen(s)
fprintf(s,'CURSOR?')
fprintf(s,'DISPLAY?')

Because the default value for the ReadAsyncMode property is continuous,
data is asynchronously returned to the input buffer as soon as it is available
from the device. You can verify the number of values read with the
BytesAvailable property.

s.BytesAvailable
ans =

69

13-47

13 Serial Port I/O

You can return the data to MATLAB using any of the synchronous read
functions. However, if you use fgetl, fgets, or fscanf, you must issue the
function twice because there are two terminators stored in the input buffer. If
you use fread, you can return all the data to MATLAB in one function call.

out = fread(s,69);

By default, fread returns numerical values in double precision arrays.
However, you can specify many other precisions as described in the fread
reference pages. You can convert the numerical data to text using the
MATLAB char function.

val = char(out)'
val =
HBARS;CH1;SECONDS;-1.0E-3;1.0E-3;VOLTS;-6.56E-1;6.24E-1
YT;DOTS;0;45

For more information about synchronous and asynchronous read operations,
see “Reading Text Data” on page 13-45. For a description of the rules used by
fread to complete a read operation, refer to its reference pages.

Example — Writing and Reading Text Data
This example illustrates how to communicate with a serial port instrument by
writing and reading text data.

The instrument is a Tektronix TDS 210 two-channel oscilloscope connected to
the COM1 port. Therefore, many of the following commands are specific to
this instrument. A sine wave is input into channel 2 of the oscilloscope, and
your job is to measure the peak-to-peak voltage of the input signal.

1 Create a serial port object — Create the serial port object s associated
with serial port COM1.

s = serial('COM1');

2 Connect to the device — Connect s to the oscilloscope. Because the
default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffer as soon as it is available from
the instrument.

13-48

Writing and Reading Data

fopen(s)

3 Write and read data — Write the *IDN? command to the instrument using
fprintf, and then read back the result of the command using fscanf.

fprintf(s,'*IDN?')
idn = fscanf(s)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

You need to determine the measurement source. Possible measurement
sources include channel 1 and channel 2 of the oscilloscope.

fprintf(s,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(s)
source =
CH1

The scope is configured to return a measurement from channel 1. Because
the input signal is connected to channel 2, you must configure the
instrument to return a measurement from this channel.

fprintf(s,'MEASUREMENT:IMMED:SOURCE CH2')
fprintf(s,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(s)
source =
CH2

You can now configure the scope to return the peak-to-peak voltage, and
then request the value of this measurement.

fprintf(s,'MEASUREMENT:MEAS1:TYPE PK2PK')
fprintf(s,'MEASUREMENT:MEAS1:VALUE?')

Transfer data from the input buffer to MATLAB using fscanf.

ptop = fscanf(s,'%g')
ptop =
2.0199999809E0

13-49

13 Serial Port I/O

4 Disconnect and clean up — When you no longer need s disconnect it
from the instrument and remove it from memory and from the MATLAB
workspace.

fclose(s)
delete(s)
clear s

Example — Parsing Input Data Using textscan
This example illustrates how to use the textscan function to parse and
format data that you read from a device. textscan is particularly useful when
you want to parse a string into one or more variables, where each variable
has its own specified format.

The instrument is a Tektronix TDS 210 two-channel oscilloscope connected to
the serial port COM1.

1 Create a serial port object — Create the serial port object s associated
with serial port COM1.

s = serial('COM1');

2 Connect to the device — Connect s to the oscilloscope. Because the
default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffer as soon as it is available from
the instrument.

fopen(s)

3 Write and read data — Write the RS232? command to the instrument using
fprintf, and then read back the result of the command using fscanf.
RS232? queries the RS-232 settings and returns the baud rate, the software
flow control setting, the hardware flow control setting, the parity type,
and the terminator.

fprintf(s,'RS232?')
data = fscanf(s)
data =
9600;0;0;NONE;LF

13-50

Writing and Reading Data

Use the textscan function to parse and format the data variable into five
new variables.

C = textscan(a, '%d%d%d%s%s','delimiter',';');

[br, sfc, hfc, par, tm] = deal(C{:});

br =

9600

sfc =

0

hfc =

0

par =

'NONE'

tm =

'LF'

4 Disconnect and clean up — When you no longer need s, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(s)
delete(s)
clear s

Example — Reading Binary Data
This example illustrates how you can download the TDS 210 oscilloscope
screen display to MATLAB. The screen display data is transferred and saved
to disk using the Windows bitmap format. This data provides a permanent
record of your work, and is an easy way to document important signal and
scope parameters.

Because the amount of data transferred is expected to be fairly large, it is
asynchronously returned to the input buffer as soon as it is available from the
instrument. This allows you to perform other tasks as the transfer progresses.
Additionally, the scope is configured to its highest baud rate of 19,200.

1 Create a serial port object — Create the serial port object s associated
with serial port COM1.

13-51

13 Serial Port I/O

s = serial('COM1');

2 Configure property values — Configure the input buffer to accept a
reasonably large number of bytes, and configure the baud rate to the
highest value supported by the scope.

s.InputBufferSize = 50000;
s.BaudRate = 19200;

3 Connect to the device — Connect s to the oscilloscope. Because the
default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffer as soon as it is available from
the instrument.

fopen(s)

4 Write and read data — Configure the scope to transfer the screen display
as a bitmap.

fprintf(s,'HARDCOPY:PORT RS232')
fprintf(s,'HARDCOPY:FORMAT BMP')
fprintf(s,'HARDCOPY START')

Wait until all the data is sent to the input buffer, and then transfer the
data to the MATLAB workspace as unsigned 8-bit integers.

out = fread(s,s.BytesAvailable,'uint8');

5 Disconnect and clean up — When you no longer need s, disconnect it
from the instrument and remove it from memory and from the MATLAB
workspace.

fclose(s)
delete(s)
clear s

Viewing the Bitmap Data
To view the bitmap data, follow these steps:

1 Open a disk file.

13-52

Writing and Reading Data

2 Write the data to the disk file.

3 Close the disk file.

4 Read the data into MATLAB using the imread function.

5 Scale and display the data using the imagesc function.

Note that the file I/O versions of the fopen, fwrite, and fclose functions
are used.

fid = fopen('test1.bmp','w');
fwrite(fid,out,'uint8');
fclose(fid)
a = imread('test1.bmp','bmp');
imagesc(a)

Because the scope returns the screen display data using only two colors, an
appropriate colormap is selected.

mymap = [0 0 0; 1 1 1];
colormap(mymap)

13-53

13 Serial Port I/O

The following diagram shows the resulting bitmap image.

13-54

Events and Callbacks

Events and Callbacks

In this section...

“Introduction” on page 13-55

“Example — Introduction to Events and Callbacks” on page 13-56

“Event Types and Callback Properties” on page 13-56

“Responding To Event Information” on page 13-59

“Creating and Executing Callback Functions” on page 13-61

“Enabling Callback Functions After They Error” on page 13-62

“Example — Using Events and Callbacks” on page 13-62

Introduction
You can enhance the power and flexibility of your serial port application by
using events. An event occurs after a condition is met and might result in
one or more callbacks.

While the serial port object is connected to the device, you can use events
to display a message, display data, analyze data, and so on. Callbacks are
controlled through callback properties and callback functions. All event types
have an associated callback property. Callback functions are MATLAB
functions that you construct to suit your specific application needs.

You execute a callback when a particular event occurs by specifying the name
of the callback function as the value for the associated callback property.

Note All examples in this section on based on a Windows 32-bit platform.
For information about other platforms refer to “Overview of a Serial Port
Object” on page 13-27.

13-55

13 Serial Port I/O

Example — Introduction to Events and Callbacks
This example uses the callback function instrcallback to display a message
to the command line when a bytes-available event occurs. The event is
generated when the terminator is read.

s = serial('COM1');
fopen(s)
s.BytesAvailableFcnMode = 'terminator';
s.BytesAvailableFcn = @instrcallback;
fprintf(s,'*IDN?')
out = fscanf(s);

MATLAB displays:

BytesAvailable event occurred at 17:01:29 for the object:
Serial-COM1.

End the serial port session.

fclose(s)
delete(s)
clear s

You can see the code for the built-in instrcallback function by using the
type command.

Event Types and Callback Properties
The following table describes serial port event types and callback properties.
This table has two columns and nine rows. In the first column (event type),
the second item (bytes available) applies to rows 2 through 4. Also, in the first
column the last item (timer) applies to rows 8 and 9.

13-56

Events and Callbacks

Event Types and Callback Properties

Event Type Associated Properties

Break interrupt BreakInterruptFcn

BytesAvailableFcn

BytesAvailableFcnCount

Bytes available

BytesAvailableFcnMode

Error ErrorFcn

Output empty OutputEmptyFcn

Pin status PinStatusFcn

TimerFcnTimer

TimerPeriod

Break-Interrupt Event
A break-interrupt event is generated immediately after a break interrupt is
generated by the serial port. The serial port generates a break interrupt when
the received data has been in an inactive state longer than the transmission
time for one character.

This event executes the callback function specified for the BreakInterruptFcn
property. It can be generated for both synchronous and asynchronous read
and write operations.

Bytes-Available Event
A bytes-available event is generated immediately after a predetermined
number of bytes are available in the input buffer or a terminator is read, as
determined by the BytesAvailableFcnMode property.

If BytesAvailableFcnMode is byte, the bytes-available event executes the
callback function specified for the BytesAvailableFcn property every time
the number of bytes specified by BytesAvailableFcnCount is stored in the
input buffer. If BytesAvailableFcnMode is terminator, the callback function
executes every time the character specified by the Terminator property
is read.

13-57

13 Serial Port I/O

This event can be generated only during an asynchronous read operation.

Error Event
An error event is generated immediately after an error occurs.

This event executes the callback function specified for the ErrorFcn property.
It can be generated only during an asynchronous read or write operation.

An error event is generated when a time-out occurs. A time-out occurs if
a read or write operation does not successfully complete within the time
specified by the Timeout property. An error event is not generated for
configuration errors such as setting an invalid property value.

Output-Empty Event
An output-empty event is generated immediately after the output buffer is
empty.

This event executes the callback function specified for the OutputEmptyFcn
property. It can be generated only during an asynchronous write operation.

Pin Status Event
A pin status event is generated immediately after the state (pin value)
changes for the CD, CTS, DSR, or RI pins. For a description of these pins, see
“Serial Port Signals and Pin Assignments” on page 13-7.

This event executes the callback function specified for the PinStatusFcn
property. It can be generated for both synchronous and asynchronous read
and write operations.

Timer Event
A timer event is generated when the time specified by the TimerPeriod
property passes. Time is measured relative to when the serial port object is
connected to the device.

This event executes the callback function specified for the TimerFcn property.
Note that some timer events might not be processed if your system is
significantly slowed or if the TimerPeriod value is too small.

13-58

Events and Callbacks

Responding To Event Information
You can respond to event information in a callback function or in a record file.
Event information is stored in a callback function using two fields: Type and
Data. The Type field contains the event type, while the Data field contains
event-specific information. As described in “Creating and Executing Callback
Functions” on page 13-61, these two fields are associated with a structure that
you define in the callback function header. To learn about recording data and
event information to a record file, see “Debugging: Recording Information to
Disk” on page 13-71.

The following table shows event types and the values for the Type and Data
fields. The table has three columns and 15 rows. Items in the first column
(event type) span several rows, as follows:

Break interrupt: rows 1 and 2

Bytes available: rows 3 and 4

Error: rows 5 through 7

Output empty: rows 8 and 9

Pin status: rows 10 through 13

Timer: rows 14 and 15

Event Information

Event Type Field Field Value

Type BreakInterruptBreak interrupt

Data.AbsTime day-month-year
hour:minute:second

Type BytesAvailableBytes available

Data.AbsTime day-month-year
hour:minute:second

13-59

13 Serial Port I/O

Event Information (Continued)

Event Type Field Field Value

Type Error

Data.AbsTime day-month-year
hour:minute:second

Error

Data.Message An error string

Type OutputEmptyOutput empty

Data.AbsTime day-month-year
hour:minute:second

Type PinStatus

Data.AbsTime day-month-year
hour:minute:second

Data.Pin CarrierDetect,
ClearToSend,
DataSetReady, or
RingIndicator

Pin status

Data.PinValue on or off

Type TimerTimer

Data.AbsTime day-month-year
hour:minute:second

The following topics describe the Data field values.

The AbsTime Field
The AbsTime field, defined for all events, is the absolute time the
event occurred. The absolute time is returned using the clock format:
day-month-year hour:minute:second.

The Pin Field
The pin status event uses the Pin field to indicate if the CD, CTS, DSR, or RI
pins changed state. For a description of these pins, see “Serial Port Signals
and Pin Assignments” on page 13-7.

13-60

Events and Callbacks

The PinValue Field
The pin status event uses the PinValue field to indicate the state of the CD,
CTS, DSR, or RI pins. Possible values are on or off.

The Message Field
The error event uses the Message field to store the descriptive message that
is generated when an error occurs.

Creating and Executing Callback Functions
You can specify the callback function to be executed when a specific event
type occurs by including the name of the file as the value for the associated
callback property. You can specify the callback function as a function handle
or as a string cell array element. Function handles are described in the
function_handle reference pages.

For example, to execute the callback function mycallback every time the
terminator is read from your device:

s.BytesAvailableFcnMode = 'terminator';
s.BytesAvailableFcn = @mycallback;

Alternatively, you can specify the callback function as a cell array.

s.BytesAvailableFcn = {'mycallback'};

Callback functions require at least two input arguments. The first argument
is the serial port object. The second argument is a variable that captures the
event information shown in the table, Event Information on page 13-59. This
event information pertains only to the event that caused the callback function
to execute. The function header for mycallback is:

function mycallback(obj,event)

You pass additional parameters to the callback function by including both
the callback function and the parameters as elements of a cell array. For
example, to pass the MATLAB variable time to mycallback:

time = datestr(now,0);
s.BytesAvailableFcnMode = 'terminator';

13-61

13 Serial Port I/O

s.BytesAvailableFcn = {@mycallback,time};

Alternatively, you can specify the callback function as a string in the cell
array.

s.BytesAvailableFcn = {'mycallback',time};

The corresponding function header is:

function mycallback(obj,event,time)

If you pass additional parameters to the callback function, they must be
included in the function header after the two required arguments.

Note You can also specify the callback function as a string. In this case, the
callback is evaluated in the MATLAB workspace and no requirements are
made on the input arguments of the callback function.

Enabling Callback Functions After They Error
If an error occurs while a callback function is executing the following occurs:

• The callback function is automatically disabled.

• A warning is displayed at the command line, indicating that the callback
function is disabled.

If you want to enable the same callback function, set the callback property
to the same value or disconnect the object with the fclose function. If you
want to use a different callback function, the callback is enabled when you
configure the callback property to the new value.

Example — Using Events and Callbacks
This example uses the callback function instrcallback to display
event-related information to the command line when a bytes-available event
or an output-empty event occurs.

1 Create a serial port object — Create the serial port object s associated
with serial port COM1.

13-62

Events and Callbacks

s = serial('COM1');

2 Configure properties — Configure s to execute the callback function
instrcallback when a bytes-available event or an output-empty event
occurs. Because instrcallback requires the serial port object and event
information to be passed as input arguments, the callback function is
specified as a function handle.

s.BytesAvailableFcnMode = 'terminator';
s.BytesAvailableFcn = @instrcallback;
s.OutputEmptyFcn = @instrcallback;

3 Connect to the device — Connect s to the Tektronix TDS 210 oscilloscope.
Because the default value for the ReadAsyncMode property is continuous,
data is asynchronously returned to the input buffer as soon as it is available
from the instrument.

fopen(s)

4 Write and read data — Write the RS232? command asynchronously to the
oscilloscope. This command queries the RS-232 settings and returns the
baud rate, the software flow control setting, the hardware flow control
setting, the parity type, and the terminator.

fprintf(s,'RS232?','async')

instrcallback is called after the RS232? command is sent, and when the
terminator is read. The resulting displays are:

OutputEmpty event occurred at 17:37:21 for the object:
Serial-COM1.

BytesAvailable event occurred at 17:37:21 for the object:
Serial-COM1.

Read the data from the input buffer.

out = fscanf(s)
out =
9600;0;0;NONE;LF

13-63

13 Serial Port I/O

5 Disconnect and clean up — When you no longer need s, disconnect it
from the instrument and remove it from memory and from the MATLAB
workspace.

fclose(s)
delete(s)
clear s

13-64

Using Control Pins

Using Control Pins

In this section...

“Properties of Serial Port Control Pins” on page 13-65

“Signaling the Presence of Connected Devices” on page 13-65

“Controlling the Flow of Data: Handshaking” on page 13-68

Properties of Serial Port Control Pins
As described in “Serial Port Signals and Pin Assignments” on page 13-7, 9-pin
serial ports include six control pins. The following table shows properties
associated with the serial port control pins.

Control Pin Properties

Property Name Description

DataTerminalReady State of the DTR pin

FlowControl Data flow control method to use

PinStatus State of the CD, CTS, DSR, and RI pins

RequestToSend State of the RTS pin

Signaling the Presence of Connected Devices
DTEs and DCEs often use the CD, DSR, RI, and DTR pins to indicate whether
a connection is established between serial port devices. Once the connection is
established, you can begin to write or read data.

You can monitor the state of the CD, DSR, and RI pins with the PinStatus
property. You can specify or monitor the state of the DTR pin with the
DataTerminalReady property.

The following example illustrates how these pins are used when two modems
are connected to each other.

13-65

13 Serial Port I/O

Note All examples in this section are based on a Windows 32-bit platform.
For more information about other supported platforms, refer to “Overview of
a Serial Port Object” on page 13-27.

Example — Connecting Two Modems
This example connects two modems to each other via the same computer,
and illustrates how you can monitor the communication status for the
computer-modem connections, and for the modem-modem connection. The
first modem is connected to COM1, while the second modem is connected to
COM2.

1 Create the serial port objects — After the modems are powered on, the
serial port object s1 is created for the first modem, and the serial port
object s2 is created for the second modem.

s1 = serial('COM1');
s2 = serial('COM2');

2 Connect to the devices — s1 and s2 are connected to the modems. Because
the default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffers as soon as it is available
from the modems.

fopen(s1)
fopen(s2)

Because the default DataTerminalReady property value is on, the computer
(data terminal) is now ready to exchange data with the modems. You can
verify that the modems (data sets) can communicate with the computer
by examining the value of the Data Set Ready pin with the PinStatus
property.

s1.Pinstatus
ans =

CarrierDetect: 'off'
ClearToSend: 'on'

DataSetReady: 'on'
RingIndicator: 'off'

13-66

Using Control Pins

The value of the DataSetReady field is on because both modems were
powered on before they were connected to the objects.

3 Configure properties — Both modems are configured for a baud rate of
2400 bits per second and a carriage return (CR) terminator.

s1.BaudRate = 2400;
s1.Terminator = 'CR';
s2.BaudRate = 2400;
s2.Terminator = 'CR';

4 Write and read data — Write the atd command to the first modem. This
command puts the modem “off the hook,” which is equivalent to manually
lifting a phone receiver.

fprintf(s1,'atd')

Write the ata command to the second modem. This command puts the
modem in “answer mode,” which forces it to connect to the first modem.

fprintf(s2,'ata')

After the two modems negotiate their connection, verify the connection
status by examining the value of the Carrier Detect pin using the
PinStatus property.

s1.PinStatus
ans =

CarrierDetect: 'on'
ClearToSend: 'on'

DataSetReady: 'on'
RingIndicator: 'off'

Verify the modem-modem connection by reading the descriptive message
returned by the second modem.

s2.BytesAvailable
ans =

25
out = fread(s2,25);
char(out)'
ans =

13-67

13 Serial Port I/O

ata
CONNECT 2400/NONE

Now break the connection between the two modems by configuring the
DataTerminalReady property to off. You can verify that the modems are
disconnected by examining the Carrier Detect pin value.

s1.DataTerminalReady = 'off';
s1.PinStatus
ans =

CarrierDetect: 'off'
ClearToSend: 'on'

DataSetReady: 'on'
RingIndicator: 'off'

5 Disconnect and clean up — Disconnect the objects from the modems and
remove the objects from memory and from the MATLAB workspace.

fclose([s1 s2])
delete([s1 s2])
clear s1 s2

Controlling the Flow of Data: Handshaking
Data flow control or handshaking is a method used for communicating
between a DCE and a DTE to prevent data loss during transmission. For
example, suppose your computer can receive only a limited amount of data
before it must be processed. As this limit is reached, a handshaking signal
is transmitted to the DCE to stop sending data. When the computer can
accept more data, another handshaking signal is transmitted to the DCE to
resume sending data.

If supported by your device, you can control data flow using one of these
methods:

• Hardware handshaking

• Software handshaking

13-68

Using Control Pins

Note Although you might be able to configure your device for both hardware
handshaking and software handshaking at the same time, MATLAB does not
support this behavior.

You can specify the data flow control method with the FlowControl property.
If FlowControl is hardware, hardware handshaking is used to control data
flow. If FlowControl is software, software handshaking is used to control
data flow. If FlowControl is none, no handshaking is used.

Hardware Handshaking
Hardware handshaking uses specific serial port pins to control data flow. In
most cases, these are the RTS and CTS pins. Hardware handshaking using
these pins is described in “The RTS and CTS Pins” on page 13-10.

If FlowControl is hardware, the RTS and CTS pins are automatically
managed by the DTE and DCE. You can return the CTS pin value with
the PinStatus property. Configure or return the RTS pin value with the
RequestToSend property.

Note Some devices also use the DTR and DSR pins for handshaking.
However, these pins are typically used to indicate that the system is ready for
communication, and are not used to control data transmission. In MATLAB,
hardware handshaking always uses the RTS and CTS pins.

If your device does not use hardware handshaking in the standard way, then
you might need to manually configure the RequestToSend property. In this
case, you should configure FlowControl to none. If FlowControl is hardware,
then the RequestToSend value that you specify might not be honored. Refer
to the device documentation to determine its specific pin behavior.

Software Handshaking
Software handshaking uses specific ASCII characters to control data flow.
These characters, known as Xon and Xoff (or XON and XOFF), are described
in the following table.

13-69

13 Serial Port I/O

Software Handshaking Characters

Character Integer Value Description

Xon 17 Resume data transmission

Xoff 19 Pause data transmission

When using software handshaking, the control characters are sent over the
transmission line the same way as regular data. Therefore, only the TD, RD,
and GND pins are needed.

The main disadvantage of software handshaking is that Xon or Xoff characters
are not writable while numerical data is being written to the device. This is
because numerical data might contain a 17 or 19, which makes it impossible
to distinguish between the control characters and the data. However, you can
write Xon or Xoff while data is being asynchronously read from the device
because you are using both the TD and RD pins.

Example: Using Software Handshaking
Suppose you want to use software flow control with the example described
in “Example — Reading Binary Data” on page 13-51. To do this, you must
configure the oscilloscope and serial port object for software flow control.

fprintf(s,'RS232:SOFTF ON')
s.FlowControl = 'software';

To pause data transfer, write the numerical value 19 to the device.

fwrite(s,19)

To resume data transfer, write the numerical value 17 to the device.

fwrite(s,17)

13-70

Debugging: Recording Information to Disk

Debugging: Recording Information to Disk

In this section...

“Introduction” on page 13-71

“Recording Properties” on page 13-71

“Example: Introduction to Recording Information” on page 13-72

“Creating Multiple Record Files” on page 13-72

“Specifying a Filename” on page 13-73

“The Record File Format” on page 13-73

“Example: Recording Information to Disk” on page 13-74

Introduction
Recording information to disk provides a permanent record of your serial port
session, and is an easy way to debug your application. While the serial port
object is connected to the device, you can record the following information
to a disk file:

• The number of values written to the device, the number of values read from
the device, and the data type of the values

• Data written to the device, and data read from the device

• Event information

Recording Properties
You record information to a disk file with the record function. The following
table shows the properties associated with recording information to disk.

Recording Properties

Property Name Description

RecordDetail Amount of information saved to a record file

RecordMode Specify whether data and event information is saved to
one record file or to multiple record files

13-71

13 Serial Port I/O

Recording Properties (Continued)

Property Name Description

RecordName Name of the record file

RecordStatus Indicate if data and event information are saved to a
record file

Note All examples in this section are based on a Windows 32-bit platform.
For more information about other supported platforms, refer to “Overview of
a Serial Port Object” on page 13-27.

Example: Introduction to Recording Information
This example records the number of values written to and read from the
device, and stores the information to the file myfile.txt.

s = serial('COM1');
fopen(s)
s.RecordName = 'myfile.txt';
record(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fprintf(s,'RS232?')
rs232 = fscanf(s);

End the serial port session.

fclose(s)
delete(s)
clear s

You can use the type command to display myfile.txt at the command line.

Creating Multiple Record Files
When you initiate recording with the record function, the RecordMode
property determines if a new record file is created or if new information is
appended to an existing record file.

13-72

Debugging: Recording Information to Disk

You can configure RecordMode to overwrite, append, or index. If RecordMode
is overwrite, the record file is overwritten each time recording is initiated. If
RecordMode is append, the new information is appended to the file specified
by RecordName. If RecordMode is index, a different disk file is created each
time recording is initiated. The rules for specifying a record filename are
discussed in the next section.

Specifying a Filename
You specify the name of the record file with the RecordName property. You can
specify any value for RecordName— including a directory path — provided the
filename is supported by your operating system. Additionally, if RecordMode
is index, the filename follows these rules:

• Indexed filenames are identified by a number. This number precedes the
filename extension and is increased by 1 for successive record files.

• If no number is specified as part of the initial filename, the first record file
does not have a number associated with it. For example, if RecordName is
myfile.txt, myfile.txt is the name of the first record file, myfile01.txt
is the name of the second record file, and so on.

• RecordName is updated after the record file is closed.

• If the specified filename already exists, the existing file is overwritten.

The Record File Format
The record file is an ASCII file that contains a record of one or more serial
port sessions. You specify the amount of information saved to a record file
with the RecordDetail property.

RecordDetail can be compact or verbose. A compact record file contains the
number of values written to the device, the number of values read from the
device, the data type of the values, and event information. A verbose record
file contains the preceding information as well as the data transferred to
and from the device.

Binary data with precision given by uchar, schar, (u)int8, (u)int16, or
(u)int32 is recorded using hexadecimal format. For example, if the integer
value 255 is read from the instrument as a 16-bit integer, the hexadecimal
value 00FF is saved in the record file. Single- and double-precision

13-73

13 Serial Port I/O

floating-point numbers are recorded as decimal values using the %g format,
and as hexadecimal values using the format specified by the IEEE® Standard
754-1985 for Binary Floating-Point Arithmetic.

The IEEE floating-point format includes three components: the sign bit, the
exponent field, and the significant field. Single-precision floating-point values
consist of 32 bits. The value is given by

Double-precision floating-point values consist of 64 bits. The value is given by

The floating-point format component, and the associated single-precision and
double-precision bits are shown in the following table.

Component Single-Precision Bits Double-Precision Bits

sign 1 1

exp 2–9 2–12

significand 10–32 13–64

Bit 1 is the left-most bit as stored in the record file.

Example: Recording Information to Disk
This example illustrates how to record information transferred between a
serial port object and a Tektronix TDS 210 oscilloscope. Additionally, the
structure of the resulting record file is presented.

1 Create the serial port object — Create the serial port object s associated
with the serial port COM1.

s = serial('COM1');

2 Connect to the device — Connect s to the oscilloscope. Because the
default value for the ReadAsyncMode property is continuous, data is

13-74

Debugging: Recording Information to Disk

asynchronously returned the input buffer as soon as it is available from
the instrument.

fopen(s)

3 Configure property values — Configure s to record information to multiple
disk files using the verbose format. Recording is then initiated with the
first disk file defined as WaveForm1.txt.

s.RecordMode = 'index';
s.RecordDetail = 'verbose';
s.RecordName = 'WaveForm1.txt';
record(s)

4 Write and read data — The commands written to the instrument, and
the data read from the instrument are recorded in the record file. For an
explanation of the oscilloscope commands, see “Example — Writing and
Reading Text Data” on page 13-48.

fprintf(s,'*IDN?')
idn = fscanf(s);
fprintf(s,'MEASUREMENT:IMMED:SOURCE CH2')
fprintf(s,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(s);

Read the peak-to-peak voltage with the fread function. Note that the data
returned by fread is recorded using hex format.

fprintf(s,'MEASUREMENT:MEAS1:TYPE PK2PK')
fprintf(s,'MEASUREMENT:MEAS1:VALUE?')
ptop = fread(s,s.BytesAvailable);

Convert the peak-to-peak voltage to a character array.

char(ptop)'
ans =
2.0199999809E0

The recording state is toggled from on to off. Because the RecordMode
value is index, the record filename is automatically updated.

record(s)

13-75

13 Serial Port I/O

s.RecordStatus
ans =
off
s.RecordName
ans =
WaveForm2.txt

5 Disconnect and clean up — When you no longer need s, disconnect it
from the instrument, and remove it from memory and from the MATLAB
workspace.

fclose(s)
delete(s)
clear s

The Record File Contents
The contents of the WaveForm1.txt record file are shown below. Because
the RecordDetail property was verbose, the number of values, commands,
and data were recorded. Note that data returned by the fread function is in
hex format.

type WaveForm1.txt

Legend:

* - An event occurred.

> - A write operation occurred.

< - A read operation occurred.

1 Recording on 22-Jan-2000 at 11:21:21.575. Binary data in...

2 > 6 ascii values.

*IDN?

3 < 56 ascii values.

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

4 > 29 ascii values.

MEASUREMENT:IMMED:SOURCE CH2

5 > 26 ascii values.

MEASUREMENT:IMMED:SOURCE?

6 < 4 ascii values.

CH2

7 > 27 ascii values.

MEASUREMENT:MEAS1:TYPE PK2PK

13-76

Debugging: Recording Information to Disk

8 > 25 ascii values.

MEASUREMENT:MEAS1:VALUE?

9 < 15 uchar values.

32 2e 30 31 39 39 39 39 39 38 30 39 45 30 0a

10 Recording off.

13-77

13 Serial Port I/O

Saving and Loading

In this section...

“Using save and load” on page 13-78

“Using Serial Port Objects on Different Platforms” on page 13-79

Using save and load
You can save serial port objects to a file, just as you would any workspace
variable, using the save command. For example, suppose you create the serial
port object s associated with the serial port COM1, configure several property
values, and perform a write and read operation.

s = serial('COM1');
s.BaudRate = 19200;
s.Tag = 'My serial object';
fopen(s)
fprintf(s, '*IDN?')
out = fscanf(s);

To save the serial port object and the data read from the device to the file
myserial.mat:

save myserial s out

Note You can save data and event information as text to a disk file with
the record function.

You can recreate s and out in the workspace using the load command.

load myserial

Values for read only properties are restored to their default values upon
loading. For example, the Status property is restored to closed. Therefore, to
use s, you must connect it to the device with the fopen function. To determine
if a property is read only, examine its reference pages.

13-78

Saving and Loading

Using Serial Port Objects on Different Platforms
If you save a serial port object from one platform, and then load that object on
a different platform having different serial port names, you need to modify the
Port property value. For example, suppose you create the serial port object s
associated with the serial port COM1 on a Microsoft Windows platform. If
you want to save s for eventual use on a Linux platform, configure Port to an
appropriate value such as ttyS0 after the object is loaded.

13-79

13 Serial Port I/O

Disconnecting and Cleaning Up

In this section...

“Disconnecting a Serial Port Object” on page 13-80

“Cleaning Up the MATLAB Environment” on page 13-80

Disconnecting a Serial Port Object
When you no longer need to communicate with the device, disconnect it from
the serial port object with the fclose function.

fclose(s)

Examine the Status property to verify that the serial port object and the
device are disconnected.

s.Status
ans =
closed

After fclose is issued, the serial port associated with s is available. Now
connect another serial port object to it using fopen.

Cleaning Up the MATLAB Environment
When the serial port object is no longer needed, remove it from memory with
the delete function.

delete(s)

Before using delete, disconnect the serial port object from the device with
the fclose function.

A deleted serial port object is invalid, which means that you cannot connect it
to the device. In this case, remove the object from the MATLAB workspace. To
remove serial port objects and other variables from the MATLAB workspace,
use the clear command.

clear s

13-80

Disconnecting and Cleaning Up

Use clear on a serial port object that is still connected to a device to remove
the object from the workspace but leave it connected to the device. Restore
cleared objects to MATLAB with the instrfind function.

13-81

13 Serial Port I/O

Property Reference

In this section...

“The Property Reference Page Format” on page 13-82

“Serial Port Object Properties” on page 13-82

The Property Reference Page Format
Each serial port property description contains some or all of this information:

• The property name

• A description of the property

• The property characteristics, including:

- Read only — The condition under which the property is read only

A property can be read-only always, never, while the serial port object
is open, or while the serial port object is recording. You can configure a
property value using the set function or dot notation. You can return
the current property value using the get function or dot notation.

- Data type — the property data type

This is the data type you use when specifying a property value.

• Valid property values including the default value

When property values are given by a predefined list, the default value
is usually indicated by {}.

• An example using the property

• Related properties and functions

Serial Port Object Properties
The serial port object properties are briefly described below, and organized
into categories based on how they are used. Following this section the
properties are listed alphabetically and described in detail.

13-82

Property Reference

Communications
Properties

BaudRate Rate at which bits are transmitted

DataBits Number of data bits to transmit

Parity Type of parity checking

StopBits Number of bits used to indicate the end of a byte

Terminator Terminator character

Write Properties

BytesToOutput Number of bytes currently in the output buffer

OutputBufferSize Size of the output buffer in bytes

Timeout Waiting time to complete a read or write operation

TransferStatus Indicate if an asynchronous read or write operation is
in progress

ValuesSent Total number of values written to the device

Read Properties

BytesAvailable Number of bytes available in the input buffer

InputBufferSize Size of the input buffer in bytes

ReadAsyncMode Specify whether an asynchronous read operation is
continuous or manual

Timeout Waiting time to complete a read or write operation

TransferStatus Indicate if an asynchronous read or write operation is
in progress

ValuesReceived Total number of values read from the device

13-83

13 Serial Port I/O

Callback Properties

BreakInterruptFcn Callback function to execute when a
break-interrupt event occurs

BytesAvailableFcn Callback function to execute when a specified
number of bytes is available in the input buffer,
or a terminator is read

BytesAvailableFcnCount Number of bytes that must be available in the
input buffer to generate a bytes-available event

BytesAvailableFcnMode Specify if the bytes-available event is generated
after a specified number of bytes is available in
the input buffer, or after a terminator is read

ErrorFcn Callback function to execute when an error
event occurs

OutputEmptyFcn Callback function to execute when the output
buffer is empty

PinStatusFcn Callback function to execute when the CD,
CTS, DSR, or RI pins change state

TimerFcn Callback function to execute when a predefined
period of time passes

TimerPeriod Period of time between timer events

Control Pin
Properties

DataTerminalReady State of the DTR pin

FlowControl Data flow control method to use

PinStatus State of the CD, CTS, DSR, and RI pins

RequestToSend State of the RTS pin

13-84

Property Reference

Recording
Properties

RecordDetail Amount of information saved to a record file

RecordMode Specify whether data and event information are saved
to one record file or to multiple record files

RecordName Name of the record file

RecordStatus Indicate if data and event information are saved to
a record file

General Purpose
Properties

ByteOrder Order in which the device stores bytes

Name Descriptive name for the serial port object

Port Platform-specific serial port name

Status Indicate if the serial port object is connected to the
device

Tag Label to associate with a serial port object

Type Object type

UserData Data you want to associate with a serial port object

13-85

13 Serial Port I/O

Properties — Alphabetical List

13-86

BaudRate property

Purpose Specify the rate at which bits are transmitted

Description You configure BaudRate as bits per second. The transferred bits include
the start bit, the data bits, the parity bit (if used), and the stop bits.
However, only the data bits are stored.

The baud rate is the rate at which information is transferred in a
communication channel. In the serial port context, “9600 baud” means
that the serial port is capable of transferring a maximum of 9600 bits
per second. If the information unit is one baud (one bit), the bit rate and
the baud rate are identical. If one baud is given as 10 bits, (for example,
eight data bits plus two framing bits), the bit rate is still 9600 but the
baud rate is 9600/10, or 960. You always configure BaudRate as bits per
second. Therefore, in the previous example, set BaudRate to 9600.

Note Both the computer and the peripheral device must be configured
to the same baud rate before you can successfully read or write data.

Standard baud rates include 110, 300, 600, 1200, 2400, 4800, 9600,
14400, 19200, 38400, 57600, 115200, 128000 and 256000 bits per
second. To display the supported baud rates for the serial ports on your
platform, see “Finding Serial Port Information for Your Platform” on
page 13-16.

Characteristics Read only Never

Data type Double

Values The default value is 9600.

See Also Properties

DataBits, Parity, StopBits

13-87

BreakInterruptFcn property

Purpose Specify the callback function to execute when a break-interrupt event
occurs

Description You configure BreakInterruptFcn to execute a callback function when
a break-interrupt event occurs. A break-interrupt event is generated by
the serial port when the received data is in an off (space) state longer
than the transmission time for one byte.

Note A break-interrupt event can be generated at any time during the
serial port session.

If the RecordStatus property value is on, and a break-interrupt event
occurs, the record file records this information:

• The event type as BreakInterrupt

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, see “Creating and Executing
Callback Functions” on page 13-61.

Characteristics Read only Never

Data type Callback function

Values The default value is an empty string.

See Also Functions

record

Properties

RecordStatus

13-88

ByteOrder property

Purpose Specify the byte order of the device

Description You configure ByteOrder to be littleEndian or bigEndian. If
ByteOrder is littleEndian, the device stores the first byte in the first
memory address. If ByteOrder is bigEndian, the device stores the last
byte in the first memory address.

For example, suppose the hexadecimal value 4F52 is to be stored in
device memory. Because this value consists of two bytes, 4F and 52, two
memory locations are used. Using big-endian format, 4F is stored first
in the lower storage address. Using little-endian format, 52 is stored
first in the lower storage address.

Note You should configure ByteOrder to the appropriate value for your
device before performing a read or write operation. Refer to your device
documentation for information about the order in which it stores bytes.

Characteristics Read only Never

Data type String

Values {littleEndian} The byte order of the device is little-endian.

bigEndian The byte order of the device is big-endian.

See Also Properties

Status

13-89

BytesAvailable property

Purpose Number of bytes available in the input buffer

Description BytesAvailable indicates the number of bytes currently available to be
read from the input buffer. The property value is continuously updated
as the input buffer is filled, and is set to 0 after the fopen function is
issued.

You can make use of BytesAvailable only when reading data
asynchronously. This is because when reading data synchronously,
control is returned to the MATLAB command line only after the input
buffer is empty. Therefore, the BytesAvailable value is always 0. To
learn how to read data asynchronously, see “Reading Text Data” on
page 13-45.

The BytesAvailable value can range from zero to the size of the input
buffer. Use the InputBufferSize property to specify the size of the
input buffer. Use the ValuesReceived property to return the total
number of values read.

Characteristics Read only Always

Data type Double

Values The default value is 0.

See Also Functions

fopen

Properties

InputBufferSize, TransferStatus, ValuesReceived

13-90

BytesAvailableFcn property

Purpose Specify the callback function to execute when a specified number of
bytes is available in the input buffer, or a terminator is read

Description You configure BytesAvailableFcn to execute a callback function
when a bytes-available event occurs. A bytes-available event occurs
when the number of bytes specified by the BytesAvailableFcnCount
property is available in the input buffer, or after a terminator is read,
as determined by the BytesAvailableFcnMode property.

Note A bytes-available event can be generated only for asynchronous
read operations.

If the RecordStatus property value is on, and a bytes-available event
occurs, the record file records this information:

• The event type as BytesAvailable

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, see “Creating and Executing
Callback Functions” on page 13-61.

Characteristics Read only Never

Data type Callback function

Values The default value is an empty string.

Example Create the serial port object s for a Tektronix TDS 210 two-channel
oscilloscope connected to the serial port COM1.

s = serial('COM1');

13-91

BytesAvailableFcn property

Configure s to execute the callback function instrcallback when 40
bytes are available in the input buffer.

s.BytesAvailableFcnCount = 40;
s.BytesAvailableFcnMode = 'byte';
s.BytesAvailableFcn = @instrcallback;

Connect s to the oscilloscope.

fopen(s)

Write the *IDN? command, which instructs the scope to return
identification information. Because the default value for the
ReadAsyncMode property is continuous, data is read as soon as it is
available from the instrument.

fprintf(s,'*IDN?')

MATLAB displays:

BytesAvailable event occurred at 18:33:35 for the object:
Serial-COM1.

56 bytes are read and instrcallback is called once. The resulting
display is shown above.

s.BytesAvailable
ans =

56

Suppose you remove 25 bytes from the input buffer and then issue
the MEASUREMENT? command, which instructs the scope to return its
measurement settings.

out = fscanf(s,'%c',25);
fprintf(s,'MEASUREMENT?')

MATLAB displays:

BytesAvailable event occurred at 18:33:48 for the object:

13-92

BytesAvailableFcn property

Serial-COM1.

BytesAvailable event occurred at 18:33:48 for the object:
Serial-COM1.

There are now 102 bytes in the input buffer, 31 of which are left over
from the *IDN? command. instrcallback is called twice—once when
40 bytes are available and once when 80 bytes are available.

s.BytesAvailable
ans =

102

See Also Functions

record

Properties

BytesAvailableFcnCount, BytesAvailableFcnMode, RecordStatus,
Terminator, TransferStatus

13-93

BytesAvailableFcnCount property

Purpose Specify the number of bytes that must be available in the input buffer
to generate a bytes-available event

Description You configure BytesAvailableFcnCount to the number of bytes that
must be available in the input buffer before a bytes-available event is
generated.

Use the BytesAvailableFcnMode property to specify whether the
bytes-available event occurs after a certain number of bytes are
available or after a terminator is read.

The bytes-available event executes the callback function specified for
the BytesAvailableFcn property.

You can configure BytesAvailableFcnCount only when the object is
disconnected from the device. You disconnect an object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Read only While open

Data type Double

Values The default value is 48.

See Also Functions

fclose

Properties

BytesAvailableFcn, BytesAvailableFcnMode, Status

13-94

BytesAvailableFcnMode property

Purpose Specify if the bytes-available event is generated after a specified number
of bytes is available in the input buffer, or after a terminator is read

Description You can configure BytesAvailableFcnMode to be terminator or byte. If
BytesAvailableFcnMode is terminator, a bytes-available event occurs
when the terminator specified by the Terminator property is reached.
If BytesAvailableFcnMode is byte, a bytes-available event occurs
when the number of bytes specified by the BytesAvailableFcnCount
property is available.

The bytes-available event executes the callback function specified for
the BytesAvailableFcn property.

You can configure BytesAvailableFcnMode only when the object is
disconnected from the device. You disconnect an object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Read only While open

Data type String

Values {terminator} A bytes-available event is generated when the
terminator is read.

byte A bytes-available event is generated when the
specified number of bytes are available.

See Also Functions

fclose

Properties

BytesAvailableFcn, BytesAvailableFcnCount, Status, Terminator

13-95

BytesToOutput property

Purpose Number of bytes currently in the output buffer

Description BytesToOutput indicates the number of bytes currently in the output
buffer waiting to be written to the device. The property value is
continuously updated as the output buffer is filled and emptied, and is
set to 0 after the fopen function is issued.

You can make use of BytesToOutput only when writing data
asynchronously. This is because when writing data synchronously,
control is returned to the MATLAB command line only after the output
buffer is empty. Therefore, the BytesToOutput value is always 0. To
learn how to write data asynchronously, see “Writing Text Data” on
page 13-39.

Use the ValuesSent property to return the total number of values
written to the device.

Note If you attempt to write out more data than can fit in the output
buffer, an error is returned and BytesToOutput is 0. Specify the size of
the output buffer with the OutputBufferSize property.

Characteristics Read only Always

Data type Double

Values The default value is 0.

See Also Functions

fopen

Properties

OutputBufferSize, TransferStatus, ValuesSent

13-96

DataBits property

Purpose Number of data bits to transmit

Description You can configure DataBits to be 5, 6, 7, or 8. Data is transmitted as a
series of five, six, seven, or eight bits with the least significant bit sent
first. At least seven data bits are required to transmit ASCII characters.
Eight bits are required to transmit binary data. Five and six bit data
formats are used for specialized communications equipment.

Note Both the computer and the peripheral device must be configured
to transmit the same number of data bits.

In addition to the data bits, the serial data format consists of a start bit,
one or two stop bits, and possibly a parity bit. You specify the number
of stop bits with the StopBits property, and the type of parity checking
with the Parity property.

To display the supported number of data bits for the serial ports on
your platform, see “Finding Serial Port Information for Your Platform”
on page 13-16.

Characteristics Read only Never

Data type Double

Values DataBits can be 5, 6, 7, or 8. The default value is 8.

See Also Properties

Parity, StopBits

13-97

DataTerminalReady property

Purpose State of the DTR pin

Description You can configure DataTerminalReady to be on or off. If
DataTerminalReady is on, the Data Terminal Ready (DTR) pin is
asserted. If DataTerminalReady is off, the DTR pin is unasserted.

In normal usage, the DTR and Data Set Ready (DSR) pins work
together, and are used to signal if devices are connected and powered.
However, there is nothing in the RS-232 standard that states the
DTR pin must be used in any specific way. For example, DTR and
DSR might be used for handshaking. You should refer to your device
documentation to determine its specific pin behavior.

You can return the value of the DSR pin with the PinStatus
property. Handshaking is described in “Controlling the Flow of Data:
Handshaking” on page 13-68.

Characteristics Read only Never

Data type String

Values {on} The DTR pin is asserted.

off The DTR pin is unasserted.

See Also Properties

FlowControl, PinStatus

13-98

ErrorFcn property

Purpose Specify the callback function to execute when an error event occurs

Description You configure ErrorFcn to execute a callback function when an error
event occurs.

Note An error event is generated only for asynchronous read and write
operations.

An error event is generated when a time-out occurs. A time-out occurs
if a read or write operation does not successfully complete within the
time specified by the Timeout property. An error event is not generated
for configuration errors such as setting an invalid property value.

If the RecordStatus property value is on, and an error event occurs, the
record file records this information:

• The event type as Error

• The error message

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, see “Creating and Executing
Callback Functions” on page 13-61.

Characteristics Read only Never

Data type Callback function

Values The default value is an empty string.

See Also Functions

record

13-99

ErrorFcn property

Properties

RecordStatus, Timeout

13-100

FlowControl property

Purpose Data flow control method to use

Description You can configure FlowControl to be none, hardware, or software. If
FlowControl is none, data flow control (handshaking) is not used. If
FlowControl is hardware, hardware handshaking is used to control
data flow. If FlowControl is software, software handshaking is used
to control data flow.

Hardware handshaking typically utilizes the Request to Send (RTS) and
Clear to Send (CTS) pins to control data flow. Software handshaking
uses control characters (Xon and Xoff) to control data flow. For more
information about handshaking, see “Controlling the Flow of Data:
Handshaking” on page 13-68.

You can return the value of the CTS pin with the PinStatus property.
You can specify the value of the RTS pin with the RequestToSend
property. However, if FlowControl is hardware, and you specify a value
for RequestToSend, that value might not be honored.

Note Although you might be able to configure your device for both
hardware handshaking and software handshaking at the same time,
MATLAB software does not support this behavior.

Characteristics Read only Never

Data type String

Values
{none} No flow control is used.

hardware Hardware flow control is used.

software Software flow control is used.

13-101

FlowControl property

See Also Properties

PinStatus, RequestToSend

13-102

InputBufferSize property

Purpose Size of the input buffer in bytes

Description You configure InputBufferSize as the total number of bytes that can
be stored in the input buffer during a read operation.

A read operation is terminated if the amount of data stored in the input
buffer equals the InputBufferSize value. You can read text data with
the fgetl, fget, or fscanf functions. You can read binary data with
the fread function.

You can configure InputBufferSize only when the serial port object is
disconnected from the device. You disconnect an object with the fclose
function. A disconnected object has a Status property value of closed.

If you configure InputBufferSize while there is data in the input
buffer, that data is flushed.

Characteristics Read only While open

Data type Double

Values The default value is 512.

See Also Functions

fclose, fgetl, fgets, fopen, fread, fscanf

Properties

Status

13-103

Name property

Purpose Descriptive name for the serial port object

Description You configure Name to be a descriptive name for the serial port object.

When you create a serial port object, a descriptive name is automatically
generated and stored in Name. This name is given by concatenating
the word “Serial” with the serial port specified in the serial function.
However, you can change the value of Name at any time.

The serial port is given by the Port property. If you modify this property
value, then Name is automatically updated to reflect that change.

Characteristics Read only Never

Data type String

Values Name is automatically defined when the serial port object is created.

Example Suppose you create a serial port object associated with the serial port
COM1.

s = serial('COM1');

s is automatically assigned a descriptive name.

s.Name
ans =
Serial-COM1

See Also Functions

serial

13-104

ObjectVisibility property

Purpose Control access to serial port object

Description The ObjectVisibility property provides a way for application
developers to prevent end-user access to the serial port objects created
by their applications. When an object’s ObjectVisibility property is
set to off, instrfind does not return or delete that object.

Objects that are not visible are still valid. If you have access to the
object (for example, from within the file that creates it), you can set and
get its properties and pass it to any function that operates on serial
port objects.

Characteristics Usage Any serial port object

Read only Never

Data type String

Values
{on} Object is visible to instrfind.

off Object is not visible from the command line (except
by instrfindall).

Examples The following statement creates a serial port object with its
ObjectVisibility property set to off:

s = serial('COM1','ObjectVisibility','off');
instrfind
ans =

[]

However, because the hidden object is in the workspace (s), you can
access it.

get(s,'ObjectVisibility')
ans =
off

13-105

ObjectVisibility property

See Also Functions

instrfind, instrfindall

13-106

OutputBufferSize property

Purpose Size of the output buffer in bytes

Description You configure OutputBufferSize as the total number of bytes that can
be stored in the output buffer during a write operation.

An error occurs if the output buffer cannot hold all the data to be
written. You write text data with the fprintf function. You write
binary data with the fwrite function.

You can configure OutputBufferSize only when the serial port object is
disconnected from the device. You disconnect an object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Read only While open

Data type Double

Values The default value is 512.

See Also Functions

fprintf, fwrite

Properties

Status

13-107

OutputEmptyFcn property

Purpose Specify the callback function to execute when the output buffer is empty

Description You configure OutputEmptyFcn to execute a callback function when an
output-empty event occurs. An output-empty event is generated when
the last byte is sent from the output buffer to the device.

Note An output-empty event can be generated only for asynchronous
write operations.

If the RecordStatus property value is on, and an output-empty event
occurs, the record file records this information:

• The event type as OutputEmpty

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, see “Creating and Executing
Callback Functions” on page 13-61.

Characteristics Read only Never

Data type Callback function

Values The default value is an empty string.

See Also Functions

record

Properties

RecordStatus

13-108

Parity property

Purpose Specify the type of parity checking

Description You can configure Parity to be none, odd, even, mark, or space. If
Parity is none, parity checking is not performed and the parity bit is
not transmitted. If Parity is odd, the number of mark bits (1s) in the
data is counted, and the parity bit is asserted or unasserted to obtain an
odd number of mark bits. If Parity is even, the number of mark bits
in the data is counted, and the parity bit is asserted or unasserted to
obtain an even number of mark bits. If Parity is mark, the parity bit is
asserted. If Parity is space, the parity bit is unasserted.

Parity checking can detect errors of one bit only. An error in two bits
might cause the data to have a seemingly valid parity, when in fact
it is incorrect. For more information about parity checking, see “The
Parity Bit” on page 13-14.

In addition to the parity bit, the serial data format consists of a start
bit, between five and eight data bits, and one or two stop bits. You
specify the number of data bits with the DataBits property, and the
number of stop bits with the StopBits property.

Characteristics Read only Never

Data type String

Values {none} No parity checking

odd Odd parity checking

even Even parity checking

mark Mark parity checking

space Space parity checking

See Also Properties

DataBits, StopBits

13-109

PinStatus property

Purpose State of the CD, CTS, DSR, and RI pins

Description PinStatus is a structure array that contains the fields CarrierDetect,
ClearToSend, DataSetReady and RingIndicator. These fields
indicate the state of the Carrier Detect (CD), Clear to Send (CTS),
Data Set Ready (DSR) and Ring Indicator (RI) pins, respectively. For
more information about these pins, see “Serial Port Signals and Pin
Assignments” on page 13-7.

PinStatus can be on or off for any of these fields. A value of on
indicates the associated pin is asserted. A value of off indicates the
associated pin is unasserted. A pin status event occurs when any of
these pins changes its state. A pin status event executes the call back
function specified by PinStatusFcn.

In normal usage, the Data Terminal Ready (DTR) and DSR pins
work together, while the Request to Send (RTS) and CTS pins
work together. You can specify the state of the DTR pin with the
DataTerminalReady property. You can specify the state of the RTS pin
with the RequestToSend property.

For an example that uses PinStatus, see “Example — Connecting Two
Modems” on page 13-66.

Characteristics Read only Always

Data type Structure

Values off The associated pin is unasserted.

on The associated pin is asserted.

The default value is device dependent.

See Also Properties

DataTerminalReady, PinStatusFcn, RequestToSend

13-110

PinStatusFcn property

Purpose Specify the callback function to execute when the CD, CTS, DSR, or
RI pins change state

Description You configure PinStatusFcn to execute a callback function when a pin
status event occurs. A pin status event occurs when the Carrier Detect
(CD), Clear to Send (CTS), Data Set Ready (DSR) or Ring Indicator (RI)
pin changes state. A serial port pin changes state when it is asserted
or unasserted. Information about the state of these pins is recorded in
the PinStatus property.

Note A pin status event can be generated at any time during the serial
port session.

If the RecordStatus property value is on, and a pin status event occurs,
the record file records this information:

• The event type as PinStatus

• The pin that changed its state, and the pin state as either on or off

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, see “Creating and Executing
Callback Functions” on page 13-61.

Characteristics Read only Never

Data type Callback function

Values The default value is an empty string.

See Also Functions

record

13-111

PinStatusFcn property

Properties

PinStatus, RecordStatus

13-112

Port property

Purpose Specify the platform-specific serial port name

Description You configure Port to be the name of a serial port on your platform.
Port specifies the physical port associated with the object and the
device.

When you create a serial port object, Port is automatically assigned the
port name specified for the serial function.

You can configure Port only when the object is disconnected from
the device. You disconnect an object with the fclose function. A
disconnected object has a Status property value of closed.

Characteristics Read only While open

Data type String

Values The Port value is determined when the serial port object is created.

Example Suppose you create a serial port object associated with serial port
COM1.

s = serial('COM1');

The value of the Port property is COM1.

s.Port
ans =
COM1

See Also Functions

fclose, serial

Properties

Name, Status

13-113

ReadAsyncMode property

Purpose Specify whether an asynchronous read operation is continuous or
manual

Description You can configure ReadAsyncMode to be continuous or manual. If
ReadAsyncMode is continuous, the serial port object continuously
queries the device to determine if data is available to be read. If data
is available, it is automatically read and stored in the input buffer. If
issued, the readasync function is ignored.

If ReadAsyncMode is manual, the object does not query the device
to determine if data is available to be read. Instead, you must
manually issue the readasync function to perform an asynchronous
read operation. Because readasync checks for the terminator, this
function can be slow. To increase speed, configure ReadAsyncMode to
continuous.

Note If the device is ready to transmit data, it will do so regardless of
the ReadAsyncMode value. Therefore, if ReadAsyncMode is manual and a
read operation is not in progress, data might be lost. To guarantee that
all transmitted data is stored in the input buffer, you should configure
ReadAsyncMode to continuous.

You can determine the amount of data available in the input buffer with
the BytesAvailable property. For either ReadAsyncMode value, you can
bring data into the MATLAB workspace with one of the synchronous
read functions such as fscanf, fgetl, fgets, or fread.

Characteristics Read only Never

Data type String

13-114

ReadAsyncMode property

Values {continuous} Continuously query the device to determine if data
is available to be read.

manual Manually read data from the device using the
readasync function.

See Also Functions

fgetl, fgets, fread, fscanf, readasync

Properties

BytesAvailable, InputBufferSize

13-115

RecordDetail property

Purpose Specify the amount of information saved to a record file

Description You can configure RecordDetail to be compact or verbose. If
RecordDetail is compact, the number of values written to the device,
the number of values read from the device, the data type of the values,
and event information are saved to the record file. If RecordDetail is
verbose, the data written to the device, and the data read from the
device are also saved to the record file.

The event information saved to a record file is shown in the table, Event
Information on page 13-59. The verbose record file structure is shown
in “Example: Recording Information to Disk” on page 13-74.

Characteristics Read only Never

Data type String

Values {compact} The number of values written to the device, the
number of values read from the device, the data type
of the values, and event information are saved to the
record file.

verbose The data written to the device, and the data read
from the device are also saved to the record file.

See Also Functions

record

Properties

RecordMode, RecordName, RecordStatus

13-116

RecordMode property

Purpose Specify whether data and event information are saved to one record file
or to multiple record files

Description You can configure RecordMode to be overwrite, append, or index.
If RecordMode is overwrite, the record file is overwritten each time
recording is initiated. If RecordMode is append, data is appended to the
record file each time recording is initiated. If RecordMode is index, a
different record file is created each time recording is initiated, each
with an indexed filename.

You can configure RecordMode only when the object is not recording.
You terminate recording with the record function. A object that is not
recording has a RecordStatus property value of off.

You specify the record filename with the RecordName property. The
indexed filename follows a prescribed set of rules. For a description of
these rules, see “Specifying a Filename” on page 13-73.

Characteristics Read only While recording

Data type String

Values {overwrite} The record file is overwritten.

append Data is appended to an existing record file.

index A different record file is created, each with an
indexed filename.

Example Suppose you create the serial port object s associated with the serial
port COM1.

s = serial('COM1');
fopen(s)

Specify the record filename with the RecordName property, configure
RecordMode to index, and initiate recording.

13-117

RecordMode property

s.RecordName = 'MyRecord.txt';
s.RecordMode = 'index';
record(s)

The record filename is automatically updated with an indexed filename
after recording is turned off.

record(s,'off')
s.RecordName
ans =
MyRecord01.txt

Disconnect s from the peripheral device, remove s from memory, and
remove s from the MATLAB workspace.

fclose(s)
delete(s)
clear s

See Also Functions

record

Properties

RecordDetail, RecordName, RecordStatus

13-118

RecordName property

Purpose Name of the record file

Description You configure RecordName to be the name of the record file. You can
specify any value for RecordName - including a directory path - provided
the file name is supported by your operating system.

MATLAB software supports any file name supported by your operating
system. However, if you access the file with a MATLAB command, you
might need to specify the file name using single quotes. For example,
suppose you name the record file My Record.txt. To type this file at
the MATLAB command line, you must include the name in quotes.

type('My Record.txt')

You can specify whether data and event information are saved to one
disk file or to multiple disk files with the RecordMode property. If
RecordMode is index, the filename follows a prescribed set of rules. For
a description of these rules, see “Specifying a Filename” on page 13-73.

You can configure RecordName only when the object is not recording.
You terminate recording with the record function. An object that is not
recording has a RecordStatus property value of off.

Characteristics Read only While recording

Data type String

Values The default record filename is record.txt.

See Also Functions

record

Properties

RecordDetail, RecordMode, RecordStatus

13-119

RecordStatus property

Purpose Indicate if data and event information are saved to a record file

Description You can configure RecordStatus to be off or on with the record
function. If RecordStatus is off, then data and event information are
not saved to a record file. If RecordStatus is on, then data and event
information are saved to the record file specified by RecordName.

Use the record function to initiate or complete recording. RecordStatus
is automatically configured to reflect the recording state.

For more information about recording to a disk file, see “Debugging:
Recording Information to Disk” on page 13-71.

Characteristics Read only Always

Data type String

Values {off} Data and event information are not written to a
record file.

on Data and event information are written to a
record file.

See Also Functions

record

Properties

RecordDetail, RecordMode, RecordName

13-120

RequestToSend property

Purpose State of the RTS pin

Description You can configure RequestToSend to be on or off. If RequestToSend
is on, the Request to Send (RTS) pin is asserted. If RequestToSend is
off, the RTS pin is unasserted.

In normal usage, the RTS and Clear to Send (CTS) pins work together,
and are used as standard handshaking pins for data transfer. In this
case, RTS and CTS are automatically managed by the DTE and DCE.
However, there is nothing in the RS-232 standard that requires the
RTS pin must be used in any specific way. Therefore, if you manually
configure the RequestToSend value, it is probably for nonstandard
operations.

If your device does not use hardware handshaking in the standard
way, and you need to manually configure RequestToSend, configure
the FlowControl property to none. Otherwise, the RequestToSend
value that you specify might not be honored. Refer to your device
documentation to determine its specific pin behavior.

You can return the value of the CTS pin with the PinStatus
property. Handshaking is described in “Controlling the Flow of Data:
Handshaking” on page 13-68.

Characteristics Read only Never

Data type String

Values {on} The RTS pin is asserted.

off The RTS pin is unasserted.

See Also Properties

FlowControl, PinStatus

13-121

Status property

Purpose Indicate if the serial port object is connected to the device

Description Status can be open or closed. If Status is closed, the serial port
object is not connected to the device. If Status is open, the serial port
object is connected to the device.

Before you can write or read data, you must connect the serial port
object to the device with the fopen function. Use the fclose function to
disconnect a serial port object from the device.

Characteristics Read only Always

Data type String

Values {closed} The serial port object is not connected to the device.

open The serial port object is connected to the device.

See Also Functions

fclose, fopen

13-122

StopBits property

Purpose Number of bits used to indicate the end of a byte

Description You can configure StopBits to be 1, 1.5, or 2. If StopBits is 1, one
stop bit is used to indicate the end of data transmission. If StopBits
is 2, two stop bits are used to indicate the end of data transmission.
If StopBits is 1.5, the stop bit is transferred for 150% of the normal
time used to transfer one bit.

Note Both the computer and the peripheral device must be configured
to transmit the same number of stop bits.

In addition to the stop bits, the serial data format consists of a start bit,
between five and eight data bits, and possibly a parity bit. You specify
the number of data bits with the DataBits property, and the type of
parity checking with the Parity property.

Characteristics Read only Never

Data type Double

Values {1} One stop bit is transmitted to indicate the end of a
byte.

1.5 The stop bit is transferred for 150% of the normal
time used to transfer one bit.

2 Two stop bits are transmitted to indicate the end
of a byte.

See Also Properties

DataBits, Parity

13-123

Tag property

Purpose Label to associate with a serial port object

Description You configure Tag to be a string value that uniquely identifies a serial
port object.

Tag is particularly useful when constructing programs that would
otherwise need to define the serial port object as a global variable, or
pass the object as an argument between callback routines.

You can return the serial port object with the instrfind function by
specifying the Tag property value.

Characteristics Read only Never

Data type String

Values The default value is an empty string.

Example Suppose you create a serial port object associated with the serial port
COM1.

s = serial('COM1');
fopen(s)

You can assign s a unique label using Tag.

set(s,'Tag','MySerialObj')

You can access s in the MATLAB workspace or in a file using the
instrfind function and the Tag property value.

s1 = instrfind('Tag','MySerialObj');

See Also Functions

instrfind

13-124

Terminator property

Purpose Terminator character

Description You can configure Terminator to an integer value ranging from 0 to
127, which represents the ASCII code for the character, or you can
configure Terminator to the ASCII character. For example, to configure
Terminator to a carriage return, specify the value to be CR or 13. To
configure Terminator to a linefeed, specify the value to be LF or 10. You
can also set Terminator to CR/LF or LF/CR. If Terminator is CR/LF, the
terminator is a carriage return followed by a line feed. If Terminator is
LF/CR, the terminator is a linefeed followed by a carriage return. Note
that there are no integer equivalents for these two values. Additionally,
you can set Terminator to a 1-by-2 cell array. The first element of the
cell is the read terminator and the second element of the cell array is
the write terminator.

When performing a write operation using the fprintf function, all
occurrences of \n are replaced with the Terminator property value.
Note that %s\n is the default format for fprintf. A read operation with
fgetl, fgets, or fscanf completes when the Terminator value is read.
The terminator is ignored for binary operations.

You can also use the terminator to generate a bytes-available event
when the BytesAvailableFcnMode is set to terminator.

Characteristics Read only Never

Data type String

Values An integer value ranging from 0 to 127, or the equivalent ASCII
character. CR/LF and LF/CR are also accepted values. You specify
different read and write terminators as a 1-by-2 cell array.

See Also Functions

fgetl, fgets, fprintf, fscanf

13-125

Terminator property

Properties

BytesAvailableFcnMode

13-126

Timeout property

Purpose Waiting time to complete a read or write operation

Description You configure Timeout to be the maximum time (in seconds) to wait to
complete a read or write operation.

If a time-out occurs, the read or write operation aborts. Additionally, if
a time-out occurs during an asynchronous read or write operation, then:

• An error event is generated.

• The callback function specified for ErrorFcn is executed.

Characteristics Read only Never

Data type Double

Values The default value is 10 seconds.

See Also Properties

ErrorFcn

13-127

TimerFcn property

Purpose Specify the callback function to execute when a predefined period of
time passes.

Description You configure TimerFcn to execute a callback function when a timer
event occurs. A timer event occurs when the time specified by the
TimerPeriod property passes. Time is measured relative to when the
serial port object is connected to the device with fopen.

Note A timer event can be generated at any time during the serial
port session.

If the RecordStatus property value is on, and a timer event occurs, the
record file records this information:

• The event type as Timer

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

Some timer events might not be processed if your system is significantly
slowed or if the TimerPeriod value is too small.

To learn how to create a callback function, see “Creating and Executing
Callback Functions” on page 13-61.

Characteristics Read only Never

Data type Callback function

Values The default value is an empty string.

See Also Functions

fopen, record

13-128

TimerFcn property

Properties

RecordStatus, TimerPeriod

13-129

TimerPeriod property

Purpose Period of time between timer events

Description TimerPeriod specifies the time, in seconds, that must pass before the
callback function specified for TimerFcn is called. Time is measured
relative to when the serial port object is connected to the device with
fopen.

Some timer events might not be processed if your system is significantly
slowed or if the TimerPeriod value is too small.

Characteristics Read only Never

Data type Callback function

Values The default value is 1 second. The minimum value is 0.01 second.

See Also Functions

fopen

Properties

TimerFcn

13-130

TransferStatus property

Purpose Indicate if an asynchronous read or write operation is in progress

Description TransferStatus can be idle, read, write, or read&write. If
TransferStatus is idle, no asynchronous read or write operations
are in progress. If TransferStatus is read, an asynchronous read
operation is in progress. If TransferStatus is write, an asynchronous
write operation is in progress. If TransferStatus is read&write,
both an asynchronous read and an asynchronous write operation are
in progress.

You can write data asynchronously using the fprintf or fwrite
functions. You can read data asynchronously using the readasync
function, or by configuring the ReadAsyncMode property to continuous.
While readasync is executing, TransferStatus might indicate that
data is being read even though data is not filling the input buffer. If
ReadAsyncMode is continuous, TransferStatus indicates that data is
being read only when data is actually filling the input buffer.

You can execute an asynchronous read and an asynchronous write
operation simultaneously because serial ports have separate read and
write pins. For more information about synchronous and asynchronous
read and write operations, see “Writing and Reading Data” on page
13-34.

Characteristics Read only Always

Data type String

Values {idle} No asynchronous operations are
in progress.

read An asynchronous read operation
is in progress.

13-131

TransferStatus property

write An asynchronous write operation
is in progress.

read&write Asynchronous read and write
operations are in progress.

See Also Functions

fprintf, fwrite, readasync

Properties

ReadAsyncMode

13-132

Type property

Purpose Object type

Description Type indicates the type of the object. Type is automatically defined
after the serial port object is created with the serial function. The
Type value is always serial.

Characteristics Read only Always

Data type String

Values Type is always serial. This value is automatically defined when the
serial port object is created.

Example Suppose you create a serial port object associated with the serial port
COM1.

s = serial('COM1');

The value of the Type property is serial, which is the object class.

s.Type
ans =
serial

You can also display the object class with the whos command.

Name Size Bytes Class

s 1x1 644 serial object

Grand total is 18 elements using 644 bytes

See Also Functions

serial

13-133

UserData property

Purpose Data you want to associate with a serial port object

Description You configure UserData to store data that you want to associate with a
serial port object. The object does not use this data directly, but you can
access it using the get function or the dot notation.

Characteristics Read only Never

Data type Any type

Values The default value is an empty vector.

Example Suppose you create the serial port object associated with the serial port
COM1.

s = serial('COM1');

You can associate data with s by storing it in UserData.

coeff.a = 1.0;
coeff.b = -1.25;
s.UserData = coeff;

13-134

ValuesReceived property

Purpose Total number of values read from the device

Description ValuesReceived indicates the total number of values read from the
device. The value is updated after each successful read operation, and
is set to 0 after the fopen function is issued. If the terminator is read
from the device, then this value is reflected by ValuesReceived.

If you are reading data asynchronously, use the BytesAvailable
property to return the number of bytes currently available in the input
buffer.

When performing a read operation, the received data is represented by
values rather than bytes. A value consists of one or more bytes. For
example, one uint32 value consists of four bytes. For more information
about bytes and values, see “Bytes Versus Values” on page 13-12.

Characteristics Read only Always

Data type Double

Values The default value is 0.

Example Suppose you create a serial port object associated with the serial port
COM1.

s = serial('COM1');
fopen(s)

If you write the RS232? command, and read back the response using
fscanf, ValuesReceived is 17 because the instrument is configured
to send the LF terminator.

fprintf(s,'RS232?')
out = fscanf(s)
out =
9600;0;0;NONE;LF
s.ValuesReceived

13-135

ValuesReceived property

ans =
17

See Also Functions

fopen

Properties

BytesAvailable

13-136

ValuesSent property

Purpose Total number of values written to the device

Description ValuesSent indicates the total number of values written to the device.
The value is updated after each successful write operation, and is set to
0 after the fopen function is issued. If you are writing the terminator,
ValuesSent reflects this value.

If you are writing data asynchronously, use the BytesToOutput
property to return the number of bytes currently in the output buffer.

When performing a write operation, the transmitted data is represented
by values rather than bytes. A value consists of one or more bytes. For
example, one uint32 value consists of four bytes. For more information
about bytes and values, see “Bytes Versus Values” on page 13-12.

Characteristics Read only Always

Data type Double

Values The default value is 0.

Example Suppose you create a serial port object associated with the serial port
COM1.

s = serial('COM1');
fopen(s)

If you write the *IDN? command using the fprintf function,
ValuesSent is 6 because the default data format is %s\n, and the
terminator was written.

fprintf(s,'*IDN?')
s.ValuesSent
ans =

6

13-137

ValuesSent property

See Also Functions

fopen

Properties

BytesToOutput

13-138

Index

IndexA
API

matrix access methods 3-3
memory management 3-97
mex functions 3-3

argument checking 4-12
argument passing, from Java methods

data conversion 7-59
built-in types 7-60
conversions you can perform 7-61
Java objects 7-60

argument passing, to Java methods
data conversion 7-48

built-in arrays 7-50
built-in types 7-50
Java object arrays 7-54
Java object cell arrays 7-55
Java objects 7-52
objects of Object class 7-53
string arrays 7-52
string types 7-51

effect of dimension on 7-55
argument type, Java

effect on method dispatching 7-56
array access methods

mat 1-2
arrays

cell 3-22
empty 3-23
MATLAB 3-18
multidimensional 3-23
persistent 4-48
serial port object 13-30
sparse 4-27
temporary 4-47 5-30

arrays, Java
accessing elements of 7-37
assigning

the empty matrix 7-43
values to 7-41

with single subscripts 7-42
comparison with MATLAB arrays 7-32
concatenation of 7-44
creating a copy 7-46
creating a reference 7-46
creating in MATLAB 7-35
creating with javaArray 7-35
dimensionality of 7-31
dimensions 7-34
indexing 7-32

with colon operator 7-39
with single subscripts 7-38 to 7-39

linear arrays 7-42
passed by reference 7-51
representing in MATLAB 7-30
sizing 7-33
subscripted deletion 7-43
using the end subscript 7-40

ASCII file mode 1-7
automation

client 10-76
controller 9-35 11-2
server 11-2

B
BaudRate 13-87
binary data

reading from a device 13-47
writing to a device 13-41

binary file mode 1-7
BreakInterruptFcn 13-88
BSTR 11-11
buffer

input, serial port object 13-43
output, serial port object 13-37

ByteOrder 13-89
BytesAvailable 13-90
BytesAvailableFcn 13-91
BytesAvailableFcnCount 13-94

Index-1

Index

BytesAvailableFcnMode 13-95
BytesToOutput 13-96

C
C example

convec.c 4-23
doubleelem.c 4-24
findnz.c 4-25
fulltosparse.c 4-27
phonebook.c 4-18
revord.c 4-14
sincall.c 4-28
timestwo.c 4-12
timestwoalt.c 4-13
xtimesy.c 4-17

C language
debugging 4-32

C language example
basic 4-12
calling MATLAB functions 4-28
calling user-defined functions 4-28
handling sparse arrays 4-27
persistent array 4-48

C/C++ language
data types 3-23
MEX-files 4-1

C/C++ language example
handling 8-, 16-, 32-bit data 4-24
handling arrays 4-25
handling complex data 4-23
passing multiple values 4-16
prompting user for input 4-22
strings 4-14

callback
serial port object 13-55

functions 13-61
properties 13-56

caller workspace 3-17
cat

using with Java arrays 7-44
using with Java objects 7-16

cell
using with Java objects 7-63

cell arrays 3-22 4-18
converting from Java object 7-63

char
overloading toChar in Java 7-62

class
using in Java 7-20

classes, Java 7-4
built-in 7-4
defining 7-5
identifying using which 7-26
importing 7-10
loading into workspace 7-10
making available to MATLAB 7-8
sources for 7-4
third-party 7-4
user-defined 7-4

classpath.txt
using with Java archive files 7-9
using with Java packages 7-8

colon
using in Java array access 7-39
using in Java array assignment 7-43

COM
Automation server 11-2
concepts 9-3
controller 11-2
event handler function 10-54
launching server 11-16
MATLAB as automation client 10-76
ProgID 9-4 10-8 to 10-10
server 11-2
use in the MATLAB engine 6-5

commands. See individual commands. 4-2 5-2
compiler

debugging
Microsoft 4-32

Index-2

Index

selecting on Windows 3-28
supported 3-27

compiling
MAT-file application

UNIX 1-22
Windows 1-23

complex data
in Fortran 5-19

compopts.bat 3-55
computational routine 4-2 5-2 5-5

accessing mxArray data 4-5
concatenation

of Java arrays 7-44
of Java objects 7-16

configuration
problems 3-92
UNIX 3-33
Windows 3-28

control pins
serial port object, using 13-65

convec.c 4-23
convec.F 5-19
conversion, data

in Java method arguments 7-48
copying a Java array 7-46

D
data access

within Java objects 7-18
data bits 13-14
data format

serial port 13-11
data storage 3-20
data type 4-11

C language 3-23
cell arrays 3-22
checking 4-12
complex double-precision nonsparse

matrix 3-21

empty arrays 3-23
Fortran language 3-23
MATLAB 3-23
MATLAB string 3-22
multidimensional arrays 3-23
numeric matrix 3-22
objects 3-22
sparse arrays 4-27
sparse matrices 3-23
structures 3-22

data, MATLAB 3-18
importing to 1-8

DataBits 13-97
DataTerminalReady 13-98
dblmat.F 5-20
DCE 13-6
DCOM (distributed component object

model) 11-13
using MATLAB as a server 11-13

debugging C/C++ language MEX-files 4-32
Linux 4-40
Windows 4-32

debugging Fortran language MEX-files
Linux 5-24
Windows 5-24

directory organization
MAT-file application 1-5

display
serial port object 13-29

display function
overloading toString in Java 7-27

documenting MEX-file 3-17
double

overloading toDouble in Java 7-61
doubleelem.c 4-24
DTE 13-6
dynamic memory allocation

in Fortran 5-20
mxCalloc 4-14

Index-3

Index

E
empty arrays 3-23
empty matrix

conversion to Java NULL 7-56
in Java array assignment 7-43

empty string
conversion to Java object 7-56

end
use with Java arrays 7-40

eng_mat folder 6-6
engClose 6-4
engdemo.c 6-6
engdemo.cpp 6-8
engEvalString 6-4
engGetVariable 6-4
engGetVisible 6-4
engine

compiling on UNIX 6-17
compiling on Windows 6-14
linking on UNIX 6-17
linking on Windows 6-14

engine example
calling MATLAB

from C program 6-6
from Fortran program 6-9

engine functions 6-4
engine library 6-1

communicating with MATLAB
UNIX 6-5
Windows 6-5

engOpen 6-4
engOpenSingleUse 6-4
engOutputBuffer 6-4
engPutVariable 6-4
engSetVisible 6-4
engwindemo.c 1-16 6-6
ErrorFcn 13-99
event handler

function 10-54
writing 10-54

events
serial port object 13-55

storing information 13-59
types 13-56

examples, Java programming
creating and using a phone book 7-71
finding an internet protocol address 7-69
reading a URL 7-66

exceptions, Java
handling 7-29

explore example 3-24
extension

MEX-file 3-16
external libraries

data conversion 2-22
multilevel pointers 2-50
pointers 2-39
primitive types 2-18
structures 2-53

library functions
getting information about 2-5
invoking functions 2-8
passing arguments 2-18
passing arguments:general rules 2-20
passing arguments:pointers 2-39
passing libstruct objects 2-53

loading the library 2-4
MATLAB interface to 2-1
unloading the library 2-4
using a compiler 2-4

F
-f option 3-32 3-35
fengdemo.F 6-9
fieldnames

using with Java objects 7-18
file mode

ASCII 1-7
binary 1-7

Index-4

Index

files
linking multiple 3-36

findnz.c 4-25
FlowControlHardware 13-101
folder

mex 3-3
refbook 4-11

folder path
convention 3-24

Fortran
data types 3-23
pointers

concept 5-16
declaring 5-5

Fortran examples
convec.F 5-19
dblmat.F 5-20
fulltosparse.F 5-21
matsq.F 5-16
matsqint8.F 5-17
passstr.F 5-15
revord.F 5-14
sincall.F 5-22
timestwo.F 5-13
xtimesy.F 5-18

Fortran language examples
calling MATLAB functions 5-22
handling complex data 5-19
handling sparse matrices 5-21
passing arrays of strings 5-15
passing integers 5-17
passing matrices 5-16
passing multiple values 5-18
passing scalar 4-12 5-13
passing strings 5-14

Fortran language MEX-files 5-2
components 5-2

fulltosparse.c 4-27
fulltosparse.F 5-21
function handles

serial port object callback 13-61

G
-g option 4-32
gateway routine 4-2 5-2

accessing mxArray data 4-2 5-2

H
handshaking

serial port object 13-68
help 3-17
help files 3-17

I
IDE

building MEX-files 3-43
import

using with Java classes 7-10
include folder 1-5
indexing Java arrays

using single colon subscripting 7-39
using single subscripting 7-38

InputBufferSize 13-103
internet protocol address

Java example 7-69
ir 3-23 4-27 5-21
isa

using with Java objects 7-20
isjava

using with Java objects 7-20

J
Java

API class packages 7-2
archive (JAR) files 7-9
development kit 7-5
Java Virtual Machine (JVM) 7-2

Index-5

Index

packages 7-8
Java, MATLAB interface to

arguments passed to Java methods 7-48
arguments returned from Java methods 7-59
arrays, working with 7-30
benefits of 7-2
classes, using 7-4
methods, invoking 7-21
objects, creating and using 7-13
overview 7-2

javaArray function 7-35
jc 3-23 4-27 5-21

L
library

matrix 3-3
mx 3-3

library path
setting on UNIX 1-22

linking DLL files to MEX-files 3-54
linking multiple files 3-36
load

using with Java objects 7-17
loading

serial port objects 13-78

M
macros

accessing mxArray data 4-5 5-5
MAT-file

C language
reading 1-15

compiling 1-22
examples 1-6
Fortran language

creating 1-16
reading 1-17

linking 1-22

subroutines 1-4
UNIX libraries 1-6
using 1-2
Windows libraries 1-6

MAT-file application
UNIX 1-22
Windows 1-24

MAT-file example
creating

C language 1-13
C++ language 1-14
Fortran language 1-16

reading
C language 1-15
Fortran language 1-17

MAT-functions 1-4
mat.h 1-5
matClose 1-4
matDeleteVariable 1-4
matdemo1.f 1-16
matdemo2.f 1-17
matGetDir 1-4
matGetFp 1-5
matGetNextVariable 1-4
matGetNextVariableInfo 1-4
matGetVariable 1-4
matGetVariableInfo 1-4
MATLAB

arrays 3-18
data 3-18
data file format 1-2
data storage 3-20
data type 3-23
engine 6-1
importing data 1-8
MAT-file 1-2

saving arrays to 1-8
moving data between platforms 1-6 to 1-7
standalone applications 1-2
string 3-22

Index-6

Index

using as a computation engine 6-1
variables 3-18

matOpen 1-4
matPutVariable 1-4
matPutVariableAsGlobal 1-4
matrix

complex double-precision nonsparse 3-21
numeric 3-22
sparse 3-23 5-21

matrix.h 1-5
matsq.F 5-16
matsqint8.F 5-17
memory

allocation 4-14
leak 3-100 4-48
temporary 5-30

memory management 3-97 4-47 5-30
API 3-97
compatibility 3-97
routines 3-3
special considerations 4-47

methods
using with Java methods 7-25

methods, Java
converting input arguments 7-48
displaying 7-25
displaying information about 7-23
finding the defining class 7-26
overloading 7-56
passing data to 7-48
undefined 7-28

methodsview 7-23
output fields 7-24

mex
-g 4-32

mex build script 3-43 4-12
default options file, UNIX 3-49
default options file, Windows 3-54
switches 3-44

-arch 3-44

-c 3-44
-compatibleArrayDims 3-44
-cxx 3-44
-Dname 3-44
-Dname=value 3-45
-f optionsfile 3-45
-fortran 3-45
-g 3-45
-h[elp] 3-45
-inline 3-45
-Ipathname 3-45
-largeArrayDims 3-46
-Lfolder 3-46
-lname 3-45
-n 3-46
name=value 3-47
-O 3-46
-outdir dirname 3-46
-output resultname 3-46
@rsp_file 3-44
-setup 3-28 3-46
-Uname 3-47
-v 3-47

mex folder 3-3
mex.bat 4-12
MEX-file

arguments 4-3 5-3
C/C++ language 4-1
compiling 4-12

Microsoft Visual C++ 3-57
UNIX 3-33 3-47 3-49
Windows 3-52 3-57

components 4-2
computation error 3-94
configuration problem 3-92
creating C/C++ language 4-2 4-12
creating Fortran language 5-2
custom building 3-43
debugging C/C++ language 4-32
debugging Fortran language 5-24

Index-7

Index

DLL linking 3-54
documenting 3-17
dynamically allocated memory 4-47
examples 4-11
extensions 3-16
load error 3-93
passing cell arrays 4-18
passing structures 4-18
problems 3-91 3-95
segmentation error 3-94
syntax errors 3-92
temporary array 4-47
using 3-16

mex.m 4-12
mex.sh 4-12
mexa64 extension 3-16 3-84
mexAtExit 4-48

register a function 4-48
mexCallMATLAB 4-28 4-47 5-22 to 5-23
mexCallMATLABWithTrap 4-47
mexErrMsgIdAndTxt 5-10
mexErrMsgTxt 4-47
mexEvalString 3-17
mexFunction 4-2 5-2

altered name 5-25
parameters 4-2 5-2

mexGetVariable 3-17
mexmaci64 extension 3-16 3-84
mexMakeArrayPersistent 4-48
mexMakeMemoryPersistent 4-48
mexopts.bat 3-55
mexPutVariable 3-17
mexw32 extension 3-16 3-84
mexw64 extension 3-16 3-84
Microsoft compiler

debugging 4-32
multidimensional arrays 3-23
mxArray 3-18

accessing data 4-2 4-5 5-2 5-5
contents 3-18

improperly destroying 3-98
ir 3-23
jc 3-23
nzmax 3-23
pi 3-23
pr 3-23
temporary with improper data 3-99
type 3-18

mxCalloc 4-14 4-47
in gateway routine 4-8 5-10

mxCopyComplex16ToPtr 5-19
mxCopyPtrToComplex16 5-19
mxCopyPtrToReal8 5-7 5-16
mxCreateDoubleMatrix

in gateway routine 4-8 5-10
mxCreateNumericArray 4-24
mxCreateSparse

in gateway routine 4-8 5-10
mxCreateString 4-14

in gateway routine 4-8 5-10
mxDestroyArray 3-97 5-30
mxFree 3-98
mxGetCell 4-18
mxGetData 4-18 4-24 to 4-25
mxGetField 4-18
mxGetImagData 4-24 to 4-25
mxGetPi 4-23 5-16
mxGetPr 4-17 4-23 5-16
mxGetScalar 4-13 4-17
mxMalloc 4-14 4-47
mxRealloc 4-14 4-47
mxSetCell 3-98
mxSetData 3-99 3-101
mxSetField 3-98
mxSetImagData 3-99 3-101
mxSetIr 3-101
mxSetJc 3-101
mxSetPi 3-99 3-101
mxSetPr 3-99 to 3-100
mxUNKNOWN_CLASS 5-23

Index-8

Index

N
Name

serial port property 13-104
ndims

using with Java arrays 7-34
nlhs 4-2 to 4-3 5-2 to 5-3
nrhs 4-2 to 4-3 5-2 to 5-3
null modem cable 13-7
numeric matrix 3-22
nzmax 3-23 5-21

O
objects 3-22

serial port 13-27
objects, Java

accessing data within 7-18
concatenating 7-16
constructing 7-13
converting to MATLAB cell array 7-63
converting to MATLAB structures 7-63
identifying fieldnames 7-18
information about 7-20

class name 7-20
class type 7-20

passing by reference 7-15
saving and loading 7-17

ObjectVisibility 13-105
options file

creating new 3-43
modifying 3-43
specifying 3-32 3-35
UNIX template 3-35
when to specify 3-33 3-36
Windows template 3-32

OutputBufferSize 13-107
OutputEmptyFcn 13-108
overloading Java methods 7-56

P
Parity 13-109
parity bit 13-14
passing data to Java methods 7-48
passstr.F 5-15
persistent arrays

exempting from cleanup 4-48
phonebook.c 4-18
pi 3-21
PinStatus 13-110
PinStatusFcn 13-111
plhs 4-2 to 4-3 5-2 to 5-3
pointer

Fortran language MEX-file 5-16
Port 13-113
pr 3-21
preprocessor macros

accessing mxArray data 4-5 5-5
prhs 4-2 to 4-3 5-2 to 5-3
properties

serial port object 13-82
protocol

DCOM 11-13

R
read/write failures, checking for 1-13
ReadAsyncMode 13-114
reading

binary data from a device 13-47
text data from a device 13-45

record file
serial port object

creating multiple files 13-72
filename 13-73
format 13-73

RecordDetail 13-116
RecordMode 13-117
RecordName 13-119
RecordStatus 13-120

Index-9

Index

refbook folder 4-11
references

to Java arrays 7-46
RequestToSend 13-121
revord.c 4-14
revord.F 5-14
routine

computational 4-2 5-2
gateway 4-2 5-2
mex 3-3
mx 3-3

RS-232 standard 13-6

S
save

using with Java objects 7-17
saving

serial port objects 13-78
serial port

data format 13-11
devices, connecting 13-6
object creation 13-27
RS-232 standard 13-6
session 13-21
signal and pin assignments 13-7

serial port object
array creation 13-30
callback properties 13-56
configuring communications 13-33
connecting to device 13-32
disconnecting 13-80
display 13-29
event types 13-56
handshaking 13-68
input buffer 13-43
output buffer 13-37
properties 13-82
reading binary data 13-47
reading text data 13-45

recording information to disk 13-71
using control pins 13-65
using events and callbacks 13-55
writing and reading data 13-34
writing binary data 13-41
writing text data 13-39

serializable interface 7-17
server variable 11-2
session

serial port 13-21
shared libraries

data conversion 2-22
multilevel pointers 2-50
pointers 2-39
primitive types 2-18
structures 2-53

library functions
getting information about 2-5
invoking functions 2-8
passing arguments 2-18
passing arguments:general rules 2-20
passing arguments:pointers 2-39
passing libstruct objects 2-53

loading the library 2-4
MATLAB interface to 2-1
unloading the library 2-4
using a compiler 2-4

shared libraries directory
UNIX 1-6
Windows 1-6

sincall.c 4-28
sincall.F 5-22
size

using with Java arrays 7-33
SOAP 12-2

functions 12-5
sparse arrays 4-27
sparse matrices 3-23
start bit 13-13
static data, Java

Index-10

Index

accessing 7-19
assigning 7-19

Status 13-122
stop bit 13-13
StopBits 13-123
storing data 3-20
string 3-22
struct

using with Java objects 7-63
structures 4-18
structures, MATLAB 3-22

converting from Java object 7-63

T
Tag

serial port property 13-124
temporary arrays 4-47

automatic cleanup 4-47
destroying 3-98

temporary memory
cleaning up 3-98

Terminator 13-125
text data

reading from a device 13-45
writing to a device 13-39

Timeout 13-127
TimerFcn 13-128
TimerPeriod 13-130
timestwo.c 4-12

compiling 3-36
timestwo.F 5-13

compiling 3-36
timestwoalt.c 4-13
TransferStatus 13-131
troubleshooting

MEX-file creation 3-91
Type

serial port property 13-133

U
URL

Java example 7-66
UserData

serial port property 13-134

V
%val 5-6

allocating memory 5-20
ValuesReceived 13-135
ValuesSent 13-137
variable scope 3-17
variables 3-18

W
Web services 12-2
which

using with Java methods 7-26
Windows

automation 11-2
COM 11-2
mex -setup 3-28
selecting compiler 3-28

workspace
caller 3-17
MEX-file function 3-17

write/read failures, checking for 1-13
writing

binary data to a device 13-41
text data to a device 13-39

writing event handlers 10-54
WSDL document 12-5

X
xtimesy.c 4-17
xtimesy.F 5-18

Index-11

	toc
	Read and Write MATLAB MAT-Files in C/C++ and Fortran
	Writing Custom Applications to Read and Write MAT-Files
	Why Write Custom Applications?
	What You Need
	MAT-File Interface Library
	Finding Associated Files
	MAT-Function Include Files
	MAT-Function Libraries
	Example Files

	Exchanging Data Files Between Platforms

	Copy External Data into MAT-File Format with Standalone Programs
	Overview of matimport.c Example
	Declare Variables for External Data
	Create mxArray Variables
	Create MATLAB Variable Names
	Read External Data into mxArray Data
	Create and Open MAT-File
	Write mxArray Data to File
	Clean Up
	Build the Application
	Create the MAT-File
	Import Data into MATLAB

	Create MAT-File in C
	Create MAT-File in C++
	Read MAT-File in C/C++
	Create MAT-File in Fortran
	Read MAT-File in Fortran
	Work with mxArrays
	Read Structures from a MAT-File
	Read Cell Arrays from a MAT-File

	Table of MAT-File Source Code Files
	Compiling and Linking MAT-File Programs
	Building on UNIX Operating Systems
	Setting Run-Time Library Path
	Using the Options File

	Building on Windows Operating Systems
	Deploying MAT-File Applications
	Third-Party Data Files
	Third-Party Libraries

	Calling C Shared Library Functions from MATLAB
	Calling Functions in Shared Libraries
	What Is a Shared Library?
	Selecting a C Compiler
	Loading and Unloading the Library
	Viewing Library Functions
	Viewing Functions in the Command Window
	Viewing Functions in a GUI

	Invoking Library Functions

	Limitations to Shared Library Support
	MATLAB Supports C Library Routines
	Workarounds for Loading C++ Libraries
	Declare Functions as extern “C”
	Add Module Definition File in Visual Studio

	Using Bit Fields
	Using Enum Declarations
	Unions Not Supported
	Compiler Dependencies
	Limitations Using Structures
	Limitations Using Pointers
	Function Pointers
	Multilevel Pointers

	Functions with Variable Number of Input Arguments Not Supported

	Troubleshooting Shared Library Applications
	Module Not Found Error
	No Matching Signature Error
	MATLAB Crashes Making a Function Call to a Shared Library
	Passing Arguments to Shared Library Functions
	C and MATLAB Equivalent Types
	Passing Arguments
	Guidelines for Passing Arguments

	Passing a NULL Pointer
	Creating an Empty libstruct Object

	Manually Converting Data Passed to Functions

	Shared Library shrlibsample.c
	Functions in shrlibsample Library
	Pass String Arguments
	stringToUpper C Function
	stringToUpper Function Signature
	Pass Structures
	Add Values of Fields in Structure
	addStructFields Function Signature
	c_struct Structure Definition
	Preconvert MATLAB Structure Before Adding Values
	Display Structure Field Names

	Pass Enumerated Types
	Call readEnum Function with Enumeration String
	readEnum Function Signature
	Enum1 enum Definition
	Call Function with Integer Equivalent of Enumeration
	Call Function with enum Pointer Type
	GetEnumType Function Signature

	Pass Pointers
	Pass Primitive MATLAB Type
	addDoubleRef C Function

	Pass Arrays
	Two Dimensional MATLAB Arrays
	print2darray C Function
	More than Two Dimensional MATLAB Arrays

	Iterate Through an Array
	Create Cell Array from libpointer
	Perform Pointer Arithmetic on Structure Array

	Working with Pointer Arguments
	Pointer Arguments in C Functions
	The libpointer Object
	Properties of lib.pointer Class
	Methods of lib.pointer Class
	Constructing a libpointer Object
	Reading a libpointer Object

	Creating a Pointer to a Primitive Type
	multDoubleRef C Function
	Reading Function Return Values
	multDoubleRef Function Signature
	Creating a Pointer by Offsetting from an Existing libpointer

	Creating a Pointer to a Structure
	addStructByRef C Function
	Passing the Structure Itself
	Passing a Structure Pointer

	Passing a Pointer to the First Element of an Array
	Putting a String into a Void Pointer
	Passing an Array of Strings
	getListOfStrings Function Signature
	getListOfStrings C Function
	Memory Allocation for an External Library
	Multilevel Pointers
	allocateStruct Function Signature
	allocateStruct C Function
	Returning an Array of Strings

	Working with Structure Arguments
	Structure Argument Requirements
	Finding Structure Field Names
	Strategies for Passing Structures

	Work with libstruct Objects
	Create libstruct Object
	Class of libstruct Object
	Size of libstruct Object
	Accessing Fields of libstruct Object
	MATLAB Prototype Files
	How to Create a Prototype File
	How to Specify a Thunk file
	Deploy Applications That Use loadlibrary
	Use loadlibrary in a Parallel Computing Environment
	Change Function Signature
	Rename Library Function
	Load Subset of Functions in Library
	Call Function with Variable Number of Arguments

	Create Alias Function Name Using Prototype File

	Intro to MEX-Files
	Introducing MEX-Files
	What Are MEX-Files?
	Definition of MEX
	MEX and MX Matrix Libraries
	Introduction to Source MEX-Files
	Overview of Creating a Binary MEX-File
	Configuring Your Environment

	MEX-Files Call C/C++ and Fortran Programs
	Creating a Source MEX-File
	Create Your MEX Source File
	Create a Gateway Routine
	Use Preprocessor Macros
	Verify Input and Output Parameters
	Read Input Data
	Prepare Output Data
	Perform Calculation
	Build the Binary MEX-File
	Test the MEX-File

	Workflow of a MEX-File
	Creating a Gateway Function
	Declaring Data Structures
	Managing Input and Output Parameters
	Validating Inputs
	Allocating and Freeing Memory
	Manipulating Data
	Displaying Messages to the User
	Handling Errors
	Cleaning Up and Exiting

	Using Binary MEX-Files
	Binary MEX-File Placement
	Using Help Files with MEX-Files
	Workspace for MEX-File Functions

	MATLAB Data
	The MATLAB Array
	Lifecycle of mxArray
	Input Argument prhs
	Output Argument plhs
	Local Variable

	Data Storage
	MATLAB Types
	Complex Double-Precision Matrices
	Numeric Matrices
	Logical Matrices
	MATLAB Strings
	Cell Arrays
	Structures
	Objects
	Multidimensional Arrays
	Empty Arrays

	Sparse Matrices
	Using Data Types
	The explore Example

	Testing for Most-Derived Class
	Testing for a Category of Types
	Another Test for Built-In Types

	Build MEX-Files
	What You Need to Build MEX-Files
	Selecting a Compiler on Windows Platforms
	Viewing Supported Windows Compilers
	Selecting a Windows Compiler Configuration
	Getting Windows Configuration Information
	Specifying a Windows Options File

	Selecting a Compiler on UNIX Platforms
	Selecting a UNIX Compiler Configuration
	Getting UNIX Configuration Information
	Specifying a UNIX Options File

	Linking Multiple Files
	Overview of Building the timestwo MEX-File

	Table of MEX-File Source Code Files
	Custom Building MEX-Files
	When to Use Custom Building
	MEX Script Switches
	Custom Building on UNIX Systems
	Compile Stage on UNIX Systems
	Link Stage on UNIX Systems
	Build Options on UNIX Systems
	UNIX Default Options File
	Files and Folders on UNIX Systems

	Custom Building on Windows Systems
	Compile Stage on Windows Systems
	Prelink Stage on Windows Systems
	Link Stage on Windows Systems
	Linking DLL Files to Binary MEX-Files on Windows Systems
	Windows Default Options File
	Files and Folders on Windows Systems
	Compiling MEX-Files with the Microsoft Visual C++ IDE

	Call LAPACK and BLAS Functions
	What You Need to Know
	Creating a MEX-File Using LAPACK and BLAS Functions
	Building on Windows Platforms
	Building on UNIX Platforms
	Testing the matrixMultiply MEX-File

	Preserving Input Values from Modification
	Example — matrixDivide.c

	Passing Arguments to Fortran Functions from C/C++ Programs
	Example — matrixMultiply.c

	Passing Arguments to Fortran Functions from Fortran Programs
	Handling Complex Numbers in LAPACK and BLAS Functions
	Handling Complex Number Input Values
	Handling Complex Number Output Arguments
	Example — Passing Complex Variables
	Example — Handling Fortran Complex Return Type
	Example — Symmetric Indefinite Factorization Using LAPACK

	Modifying the Function Name on UNIX Systems

	Running MEX-Files with .DLL File Extensions on Windows 32-bit Pl
	Upgrade MEX-Files to Use 64-Bit API
	MATLAB Support for 64-Bit Indexing
	MEX Uses 32-Bit API by Default
	Can I Run Existing Binary MEX-Files?
	Must I Update Source MEX-Files on 64-Bit Platforms?
	Must I Update Source MEX-Files on 32-Bit Platforms?

	What If I Do Not Upgrade?
	How to Upgrade MEX-Files to Use the 64-Bit API
	Back Up Files and Create Tests
	Update Variables
	Update Arguments Used to Call Functions in the 64-Bit API
	Update Variables Used for Array Indices and Sizes
	Analyze Other Variables
	Replace Unsupported Functions
	Test, Debug, and Resolve Differences After Each Refactoring Iter
	Resolve -largeArrayDims Build Failures and Warnings
	Execute 64-Bit MEX-File and Compare Results with 32-Bit Version
	Experiment with Large Arrays
	Update Fortran Source Code

	Platform Compatibility
	Verify the MEX-File Is Built For Your Platform
	Verify Your Architecture on Windows Platforms

	Invalid MEX-File Error
	MATLAB Version Incompatibility
	DLL Files Not on Path on Windows Systems

	Before You Run a MEX-File You Receive from Someone Else
	Version Compatibility
	Troubleshooting MEX-Files
	Technical Support

	Configuration Issues
	Search Path Problem on Microsoft Windows Systems
	MATLAB Path Names Containing Spaces on Windows Systems
	Internal Error When Using mex -setup ()

	Understanding MEX-File Problems
	Problem 1 — Compiling a Source MEX-File Fails
	Syntax Errors Compiling C/C++ MEX-Files on UNIX

	Problem 2 — Compiling Your Own Program Fails
	Symbol mexFunction Unresolved or Not Defined

	Problem 3 — Binary MEX-File Load Errors
	Problem 4 — Segmentation Fault
	Problem 5 — Program Generates Incorrect Results

	Compiler- and Platform-Specific Issues
	Linux gcc Compiler Version Error
	Linux gcc -fPIC Errors
	Watcom IDE Unresolved References

	Memory Management Issues
	Overview
	Improperly Destroying an mxArray
	Example
	Solution

	Incorrectly Constructing a Cell or Structure mxArray
	Example
	Solution

	Creating a Temporary mxArray with Improper Data
	Example
	Solution

	Creating Potential Memory Leaks
	Improperly Destroying a Structure
	Example
	Solution

	Destroying Memory in a C++ Class Destructor

	Compiler Errors in Fortran MEX-Files

	C/C++ MEX-Files
	C/C++ Source MEX-Files
	The Components of a C/C++ MEX-File
	Gateway Routine
	Naming the Gateway Routine
	Required Parameters
	Creating and Using Source Files
	Using MATLAB Libraries
	Required Header Files
	Naming the MEX-File

	Computational Routine
	Preprocessor Macros
	Data Flow in MEX-Files
	Showing Data Input and Output
	Gateway Routine Data Flow Diagram
	MATLAB Example yprime.c

	Creating C++ MEX-Files
	Creating Your C++ Source File
	Compiling and Linking
	Examples
	Memory Considerations For Class Destructors
	Use mexPrintf to Print to the MATLAB Command Window

	Set Up C/C++ Examples
	Pass Scalar Values
	Pass Strings
	Pass Multiple Inputs or Outputs
	Pass Structures and Cell Arrays
	Create 2-D Cell Array
	Fill mxArray
	Copying Data Directly into an mxArray
	Pointing to Data

	Prompt User for Input
	Handle Complex Data
	Handle 8-, 16-, and 32-Bit Data
	Manipulate Multidimensional Numerical Arrays
	Handle Sparse Arrays
	Call MATLAB Functions from C/C++ MEX-Files
	Use C++ Features in MEX-Files
	Handle Files with C++
	C Example
	C++ Example

	Debug C/C++ Language MEX-Files
	Notes on Debugging
	Debugging on the Microsoft Windows Platforms
	Visual Studio 2005

	Debugging on Linux Platforms
	GNU Debugger gdb

	Handling Large mxArrays
	Using the 64-Bit API
	Building the Binary MEX-File
	Example
	Caution Using Negative Values
	Building Cross-Platform Applications

	Memory Management
	Automatic Cleanup of Temporary Arrays
	Persistent Arrays

	Handling Large File I/O
	Prerequisites to Using 64-Bit I/O
	Header File
	Type Declarations
	Functions

	Specifying Constant Literal Values
	Opening a File
	Printing Formatted Messages
	Replacing fseek and ftell with 64-Bit Functions
	Determining the Size of an Open File
	Refreshing the File Size Record
	Getting the File Size

	Determining the Size of a Closed File

	Fortran MEX-Files
	Fortran Source MEX-Files
	The Components of a Fortran MEX-File
	Gateway Routine
	Naming the Gateway Routine
	Required Parameters
	Creating and Using Source Files
	Using MATLAB Libraries
	Required Header Files
	Naming the MEX-File

	Computational Routine
	Preprocessor Macros
	Using the Fortran %val Construct
	A %val Construct Example

	Data Flow in MEX-Files
	Showing Data Input and Output
	Gateway Routine Data Flow Diagram
	MATLAB Example timestwo.F

	Set Up Fortran Examples
	Pass Scalar Values
	Pass Strings
	Pass Arrays of Strings
	Pass Matrices
	Pass Integers
	Pass Multiple Inputs or Outputs
	Handle Complex Data
	Dynamically Allocate Memory
	Handle Sparse Matrices
	Call MATLAB Functions from Fortran MEX-Files
	Debug Fortran Source MEX-Files
	Notes on Debugging
	Debugging on Microsoft Windows Platforms
	Debugging on Linux Platforms
	GNU Debugger gdb

	Handling Large mxArrays
	Using the 64-Bit API
	Building the Binary MEX-File
	Caution Using Negative Values
	Building Cross-Platform Applications

	Memory Management

	Calling MATLAB Engine from C/C++ and Fortran Programs
	Using MATLAB Engine
	Introduction to MATLAB Engine
	What You Need to Build Engine Applications
	The Engine Library
	Communicating with MATLAB Software

	GUI-Intensive Applications

	Call MATLAB Functions from C Applications
	Call MATLAB Functions from C++ Applications
	Call MATLAB Functions from Fortran Applications
	Attach to Existing MATLAB Sessions
	Compiling Engine Applications with MEX Command
	Requirements to Build and Run Engine Applications
	Building With the Engine Options File
	Run-Time Requirements

	Building and Running Engine Applications on Windows Operating Sy
	Engine Options Files on Windows
	Setting Run-Time Library Path on Windows
	Registering MATLAB Software as a COM Server

	Windows Engine Example engwindemo
	Building and Running Engine Applications on UNIX Operating Syste
	Engine Options File on UNIX
	Setting Run-Time Library Path on Linux and Macintosh

	UNIX Engine Example engdemo

	Compiling Engine Applications with IDE
	Configuring the IDE
	Files Required by Engine Applications
	Specifying Engine Include Files
	Specifying Engine Libraries
	Specifying Library Files Required by libeng
	Specifying ICU Data Files

	Troubleshooting Engine Applications
	Can't Start MATLAB Engine Message
	Debugging MATLAB Functions Used in Engine Applications

	Using Java Libraries from MATLAB
	Overview of Java Interface
	Java Interface Is Integral to MATLAB
	Benefits of the MATLAB Java Interface
	Who Should Use the MATLAB Java Interface
	To Learn More About Java Programming Language
	Platform Support for JVM Software

	Bringing Java Classes into MATLAB Workspace
	Introduction
	Sources of Java Classes
	Defining New Java Classes
	The Java Class Path
	The Static Path
	The Dynamic Path

	Making Java Classes Available in MATLAB Workspace
	Making Individual (Unpackaged) Classes Available
	Making Entire Packages Available
	Making Classes in a JAR File Available
	Loading a Class Using Java Class.forName Method

	Loading Java Class Definitions
	Determining Which Classes Are Loaded

	Simplifying Java Class Names
	Locating Native Method Libraries
	Java Classes Contained in a JAR File

	Creating and Using Java Objects
	Overview
	Constructing Java Objects
	Using the javaObjectEDT Function
	Java Objects Are References in MATLAB Applications

	Concatenating Java Objects
	Concatenating Objects of the Same Class
	Concatenating Objects of Unlike Classes

	Saving and Loading Java Objects to MAT-Files
	Finding the Public Data Fields of an Object
	Accessing Private and Public Data
	Examples
	Accessing Data from a Static Field
	Assigning to a Static Field

	Determining the Class of an Object

	Invoking Methods on Java Objects
	Calling Syntax
	Java Calling Syntax
	MATLAB Calling Syntax
	Calling Syntax for Static Methods of Java Classes
	Using the javaMethod Function

	Obtaining Information About Methods
	Methodsview: Displaying a Listing of Java Methods
	Using the Methods Function on Java Classes
	Determining What Classes Define a Method

	Java Methods That Affect MATLAB Commands
	Changing the Effect of disp and display
	Changing the Effect of isequal
	Changing the Effect of double and char

	How MATLAB Handles Undefined Methods
	How MATLAB Handles Java Exceptions
	Method Execution in MATLAB

	Working with Java Arrays
	Introduction
	How MATLAB Represents the Java Array
	Representing More Than One Dimension
	Array Indexing
	The Shape of the Java Array
	Interpreting the Size of a Java Array
	Interpreting the Number of Dimensions of a Java Arrays

	Creating an Array of Objects in MATLAB
	Using the javaArray Function
	Another Way to Create a Java Array

	Accessing Elements of a Java Array
	Using Single Subscript Indexing to Access Arrays
	Using the Colon Operator
	Using END in a Subscript

	Assigning to a Java Array
	Using Single Subscript Indexing for Array Assignment
	Assigning to a Linear Array
	Assigning the Empty Matrix
	Subscripted Deletion

	Concatenating Java Arrays
	Creating a New Array Reference
	Creating a Copy of a Java Array

	Passing Data to Java Methods
	Introduction
	Conversion of MATLAB Argument Data
	Passing Built-In Types
	Passing Built-In Types in an Array
	MATLAB Arrays Are Passed by Value

	Passing String Arguments
	Passing Strings in an Array

	Passing Java Objects
	Handling Objects of Class java.lang.Object
	Passing Objects in an Array
	Handling a Cell Array of Java Objects

	Other Data Conversion Topics
	How Array Dimensions Affect Conversion
	Empty Matrices and Nulls

	Passing Data to Overloaded Methods
	How MATLAB Determines the Method to Call
	Example — Calling an Overloaded Method

	Handling Data Returned from Java Methods
	Introduction
	Conversion of Java Return Types
	Built-In Types
	Java Objects
	Converting Objects to MATLAB Types
	Converting to the MATLAB double Type
	Converting to the MATLAB char Type
	Converting to a MATLAB Structure
	Converting to a MATLAB Cell Array

	Read URL
	Overview
	Description of URLdemo
	Running the Example

	Find Internet Protocol Address
	Overview
	Description of resolveip
	Running the Example

	Create and Use Phone Book
	Overview
	Description of Function phonebook
	Description of Function pb_lookup
	Description of Function pb_add
	Description of Function pb_remove
	Description of Function pb_change
	Description of Function pb_listall
	Description of Function pb_display
	Description of Function pb_keyfilter
	Running the phonebook Program

	Using .NET Libraries from MATLAB
	Overview Using .NET from MATLAB
	What Is the Microsoft .NET Framework?
	Benefits of the MATLAB .NET Interface
	Why Use the MATLAB .NET Interface?
	Limitations to .NET Support
	What's the Difference Between the MATLAB .NET Interface and MATL
	System Requirements
	MATLAB Configuration File

	Using a .NET assembly in MATLAB
	To Learn More About the .NET Framework

	Getting Started with .NET
	What is an Assembly?
	.NET Terminology
	.NET Framework System Namespace
	Reference Type Versus Value Type

	Simplifying .NET Class Names
	Using import in MATLAB Functions

	Loading .NET Assemblies into MATLAB
	Handling Exceptions
	Working With Nested Classes

	Using a .NET Object
	Creating a .NET Object
	Building a .NET Application for MATLAB Examples
	What Classes Are in a .NET Assembly?
	Using the delete Function on a .NET Object

	Using .NET Properties
	How MATLAB Represents .NET Properties
	How MATLAB Maps C# Property and Field Access Modifiers

	Using .NET Methods in MATLAB
	Calling .NET Methods
	Getting Method Information
	C# Method Access Modifiers
	VB.NET Method Access Modifiers
	Reading Method Signatures

	Calling .NET Generic Methods
	Calling .NET Methods with Optional Arguments
	Skipping Optional Arguments
	Determining Which Overloaded Method Is Invoked
	Support for ByRef Attribute in VB.NET

	Calling .NET Extension Methods
	Call .NET Properties That Take an Argument
	Display of System.String Methods
	How MATLAB Represents .NET Operators
	Limitations to Support of .NET Methods
	Overloading MATLAB Functions

	Working with .NET Events in MATLAB
	Use .NET Events in MATLAB
	Limitations to Support of .NET Events
	MATLAB Support of Standard Signature of an Event Handler Delegat

	Using Arrays with .NET Applications
	Passing MATLAB Arrays to .NET
	Accessing .NET Array Elements in MATLAB
	Using the Get and Set Instance Functions

	Converting .NET Arrays to Cell Arrays
	Converting Nested System.Object Arrays
	C# NetDocCell Source File

	Converting .NET Jagged Arrays to MATLAB Arrays
	Limitations to Support of .NET Arrays

	Pass Jagged Arrays
	Create System.Double .NET Jagged Array
	Call .NET Method with System.String Jagged Array Arguments
	Call .NET Method with Multidimensional Jagged Array Arguments

	.NET Delegates in MATLAB
	.NET Delegates
	Call .NET Delegates in MATLAB
	Declare a Delegate in a C# Assembly
	Load the Assembly Containing the Delegate into MATLAB
	Select a MATLAB Function
	Create an Instance of the Delegate in MATLAB
	Invoke the Delegate Instance in MATLAB

	Create Delegates from .NET Object Methods
	C# Recipe Source File
	Create Delegate Instances Bound to .NET Methods
	Example — Create a Delegate Instance Associated with a .NET Obje
	Example — Create a Delegate Instance Associated with a Static .N

	Call Delegates With out and ref Type Arguments
	Combine and Remove .NET Delegates
	Calling .NET Methods Asynchronously
	Calling a Method Asynchronously Using a Callback When an Asynchr
	Calling a Method Asynchronously Without a Callback
	Using EndInvoke With out and ref Type Arguments
	Using Polling to Detect When Asynchronous Call Finishes

	Limitations to Support of .NET Delegates

	.NET Enumerations in MATLAB
	Overview of .NET Enumerations
	Default Methods for an Enumeration
	Underlying Values
	Using the NetDocEnum Example Assembly
	Work with Members of a .NET Enumeration
	Refer to a .NET Enumeration Member
	Overview
	Using the Implicit Constructor

	Display .NET Enumeration Members as Character Strings
	Convert .NET Enumeration Values to Type Double
	Iterate Through a .NET Enumeration
	Overview
	Information About System.Enum Methods

	Use .NET Enumerations to Test for Conditions
	Example Using Switch Statements
	Example Using Relational Operations

	Use Bit Flags with .NET Enumerations
	Overview
	Creating .NET Enumeration Bit Flags
	Removing a Flag from a Variable
	Replacing a Flag in a Variable
	Testing for Membership

	Read Special System Folder Path
	Limitations to Support of .NET Enumerations

	.NET Generic Classes in MATLAB
	.NET Generic Classes
	Accessing Items in .NET Collections
	Create .NET Collections
	Convert .NET Collections to MATLAB Arrays
	Create .NET Arrays of Generic Type
	Call .NET Generic Methods
	Using the NetDocGeneric Example
	Invoke Generic Class Member Function
	Invoke Static Generic Functions
	Invoke Static Generic Functions of a Generic Class
	Invoke Generic Functions of a Generic Class

	Display .NET Generic Methods Using Reflection
	showGenericMethods Function
	Display Generic Methods in a Class
	Display Generic Methods in a Generic Class

	Troubleshooting Security Policy Settings From Network Drives
	Access a Simple .NET Class
	System.DateTime Example
	Create .NET Object From Constructor
	View Information About .NET Object
	Display of DateTime Object
	Display of DateTime Properties
	Display of DateTime Methods
	Introduction to .NET Data Types

	Load a Global .NET Assembly
	Pass Numeric Arguments
	Call .NET Methods with Numeric Arguments
	Use .NET Numeric Types in MATLAB

	Pass System.String Arguments
	Call .NET Methods with System.String Arguments
	Use System.String in MATLAB

	Pass System.Enum Arguments
	Call .NET Methods with System.Enum Arguments
	Use System.Enum in MATLAB

	Pass System.Nullable Arguments
	Build Custom Assembly NetDocNullable
	SetField Function Signature
	Load NetDocNullable Assembly
	Pass System.Nullable Input Arguments
	Handle System.Nullable Output Arguments in MATLAB
	GetValueOrDefault Function Signature
	GetValueOrDefault Function Signature to Change Default
	Set Static .NET Properties
	System.Environment.CurrentDirectory Example
	Do Not Use ClassName.PropertyName Syntax for Static Properties

	Use .NET Properties That Take Arguments
	MATLAB Does Not Display Protected Properties
	Display Public Properties
	Examples Using .NET Methods
	Work with .NET Methods Having Multiple Signatures
	SampleMethodSignature Class
	Display Function Signature Example

	SampleMethods Class
	SampleMethods Class
	Call .NET Methods With out Keyword
	Call .NET Methods With ref Keyword
	Call .NET Methods With params Keyword

	Call .NET Methods with Optional Arguments
	Setting Up the Examples
	Skip Optional Arguments
	Greeting Function Signature
	Call Overloaded Methods
	calc Function Signatures

	Pass Cell Arrays of .NET Data
	Example of Cell Arrays of .NET Data
	Create a Cell Array for Each System.Object
	Create MATLAB Variables from the .NET Data
	Call MATLAB Functions with MATLAB Variables

	An Assembly is a Library of .NET Classes
	Convert Nested System.Object Arrays
	Passing Data to .NET Objects
	Pass Primitive .NET Types
	Pass Cell Arrays
	Pass Nonprimitive .NET Objects
	Pass MATLAB Strings
	Pass System.Nullable Type
	Pass NULL Values
	Unsupported MATLAB Types
	Choosing Method Signatures
	Example — Choosing a Method Signature
	Pass Arrays
	How Array Dimensions Affect Conversion
	Converting a MATLAB Array to System.Object

	Pass MATLAB Arrays as Jagged Arrays

	Handling Data Returned from .NET Objects
	.NET Type to MATLAB Type Mapping
	How MATLAB Handles System.String
	How MATLAB Handles System.__ComObject
	MATLAB Converts Object
	Casting Object to Appropriate Type
	Pass a COM Object Between Processes

	How MATLAB Handles System.Nullable
	How MATLAB Handles dynamic Type
	How MATLAB Handles Jagged Arrays

	Work with Microsoft Excel Spreadsheets Using .NET
	Work with Microsoft Word Documents Using .NET

	Using COM Objects from MATLAB
	MATLAB COM Integration
	What Is COM?
	Concepts and Terminology
	COM Objects, Clients, and Servers
	Interfaces
	COM Server Types
	Programmatic Identifiers
	In-Process and Out-of-Process Servers

	The MATLAB COM Client
	The MATLAB COM Automation Server
	Registering Controls and Servers
	Accessing COM Controls Created with .NET
	Verifying the Registration

	Getting Started with COM
	Introduction to COM
	Basic COM Functions
	Creating an Instance of a COM Object
	Getting Information About a Particular COM Control
	Getting an Object's ProgID
	Registering a Custom Control

	Use Internet Explorer Program in a MATLAB Figure
	Techniques Demonstrated
	Using the Figure to Access Properties
	Complete Code Listing
	Creating the Figure
	Calculating the ActiveX Object Container Size
	Automatic Resize
	ResizeFcn at Figure Creation
	When the Figure Is Resized

	Selecting Graphics Objects
	Closing the Figure

	Add Grid ActiveX Control in a Figure
	Techniques Demonstrated
	Using the Control
	Complete Code Listing
	Preparing to Use the Control
	Finding the Control's ProgID

	Creating a Figure to Contain the Control
	Creating an Instance of the Control
	Specifying the Size and Location
	Creating the Control

	Using Mouse-Click Event to Plot Data
	Registering the Event
	Defining the Event Handler

	Managing Figure Resize
	Closing the Figure

	Read Excel Spreadsheet Data
	Techniques Demonstrated
	Using the GUI
	Complete Code Listing
	Excel Spreadsheet Format
	Excel Automation Server
	Manipulating the Data in the MATLAB Workspace
	The Plotter GUI
	Selecting and Plotting Data
	Clearing the Axes
	Display or Hide Excel File
	Close Figure and Terminate Excel Automation Process

	Inserting MATLAB Graphs Into Excel Spreadsheets

	Supported Client/Server Configurations
	Introduction
	MATLAB Client and In-Process Server
	Microsoft ActiveX Controls
	DLL Servers
	For More Information

	MATLAB Client and Out-of-Process Server
	For More Information

	COM Implementations Supported by MATLAB Software
	Client Application and MATLAB Automation Server
	For More Information

	Client Application and MATLAB Engine Server
	For More Information

	MATLAB COM Client Support
	Creating COM Objects
	Creating the Server Process — An Overview
	Creating an ActiveX Control
	Listing Installed Controls
	Finding a Particular Control
	Creating Control Objects Using a GUI
	Creating Control Objects from the Command Line
	Repositioning the Control in a Figure Window
	Limitations to ActiveX Support

	Creating a COM Server
	Instantiating a DLL Component
	Instantiating an EXE Component

	Explore COM Objects
	About Your Object
	Exploring Properties
	Listing Properties
	Using the Property Inspector

	Exploring Methods
	Exploring Events
	Listing Server Events
	Listing Registered Events

	Exploring Interfaces
	Additional Interfaces

	Identifying Objects and Interfaces

	Use Object Properties
	About Object Properties
	Working with Multiple Objects
	Using Enumerated Values for Properties
	Finding All Enumerated Properties
	Setting Enumerated Values
	Setting Enumerated Values with the Property Inspector

	Using the Property Inspector
	Using the Property Inspector on Enumerated Values

	Custom Properties
	Properties That Take Arguments
	An Example
	Exploring the Object
	Exploring Values
	Setting Values
	Completing the Example

	Use Methods
	About Methods
	Getting Method Information
	Using invoke
	Using methods
	Using methods with -full
	Using methodsview

	Invoking Methods on an Object
	Calling Syntax
	Input and Output Arguments
	Example Using mwsamp

	Exceptions to Using Implicit Syntax
	Accessing Nonpublic Properties and Methods
	Accessing Properties That Take Arguments
	Operating on a Vector of Objects

	Specifying Enumerated Parameters
	Optional Input Arguments
	Returning Multiple Output Arguments
	Argument Callouts in Error Messages

	Use Events
	About Events
	Functions for Working with Events
	Examples of Event Handlers
	Responding to Events — an Overview
	Identifying All Events
	Registering Those Events You Want to Respond To
	Identifying Registered Events
	Responding to Events As They Occur
	Unregistering Events You No Longer Want to Listen To

	Responding to Events — Examples
	Responding to Events from an ActiveX Control
	Responding to Events from an Automation Server
	Responding to Interface Events from an Automation Server

	Writing Event Handlers
	Overview of Event Handling
	Arguments Passed to Event Handlers
	Event Structure

	Sample Event Handlers
	Writing Event Handlers as MATLAB Local Functions

	Getting Interfaces to COM Object
	IUnknown and IDispatch Interfaces
	Additional Interfaces

	Custom Interfaces

	Save COM Objects
	Functions for Saving and Restoring COM Objects
	Releasing COM Interfaces and Objects

	Handling COM Data in MATLAB Software
	Passing Data to COM Objects
	Variant Data
	SAFEARRAY Data

	Handling Data from COM Objects
	Unsupported Types
	Passing MATLAB Data to ActiveX Objects
	Passing MATLAB SAFEARRAY to COM Object
	Default Behavior in MATLAB Software
	Examples
	How to Pass a Single-Dimension SAFEARRAY
	Passing SAFEARRAY By Reference

	Reading SAFEARRAY from COM Objects in MATLAB Applications
	Displaying MATLAB Syntax for COM Objects

	Use MATLAB Application as Automation Client
	MATLAB Sample Control
	Using a MATLAB Application as an Automation Client
	Connecting to an Existing Excel Application
	Running a Macro in an Excel Server Application
	MATLAB COM Client Example

	Deploy ActiveX Controls Requiring Run-Time Licenses
	Create a Function to Build the Control
	Build the Control and the License File
	Build the Executable
	Deploy the Files

	Use Microsoft Forms 2.0 Controls
	Affected Controls
	Replacement Controls

	Use COM Collections
	Use MATLAB Application as DCOM Client
	MATLAB COM Support Limitations

	MATLAB COM Automation Server Support
	MATLAB COM Automation Server Interface
	What Is Automation?
	Creating the MATLAB Server
	Using MATLAB Software as a Shared or Dedicated Server
	Accessing Your Server from the Startup Folder
	Get the Status of a MATLAB Automation Server
	Creating a MATLAB Automation Server from Visual Basic .NET Appli

	Connecting to an Existing MATLAB Server
	Using Visual Basic .NET Code

	MATLAB Automation Server Functions and Properties
	Executing Commands in the MATLAB Server
	Using Execute
	Using Feval

	Exchanging Data with the Server
	Controlling the Server Window
	Terminating the Server Process
	Client-Specific Information
	For MATLAB Clients
	For Visual Basic .NET Clients

	Using the Visible Property

	Using MATLAB Application as DCOM Server
	Using VT_DATE Data Type
	Specifying Shared or Dedicated Server
	Starting a Shared Server
	Starting a Dedicated Server

	Manually Create Automation Server
	Launch MATLAB as Automation Server in Desktop Mode
	Call MATLAB Function from Visual Basic .NET Client
	Call MATLAB Function from Web Application
	Call MATLAB Function from C# Client
	View MATLAB Functions from Visual Basic .NET Object Browser

	Using Web Services with MATLAB
	How You Can Use Web Services with MATLAB
	What Are Web Services in MATLAB?
	What You Need to Use Web Services with MATLAB
	Typical Applications Using Web Services with MATLAB
	Accessing Data from a Server
	Running Computations on a Server
	Updating a Database on a Server
	Activating MATLAB License

	Ways of Using Web Services in MATLAB
	Two Basic Ways to Access Web Services from MATLAB
	How MATLAB Accesses Web Services

	Access Web Services That Use WSDL Documents
	Using the createClassFromWsdl Function
	Example — createClassFromWsdl Function

	Access Web Services Using MATLAB SOAP Functions
	Using the MATLAB SOAP Functions
	Example — SOAP Functions

	Considerations When Using Web Services
	XML-MATLAB Data Type Conversion Used in Web Services
	Programming with Web Services

	Where to Get Information About Web Services
	Resources for Web Services and SOAP
	Resources for WSDL
	Tools for Creating Web Services

	Serial Port I/O
	Introduction
	What Is the MATLAB Serial Port Interface?
	Supported Serial Port Interface Standards
	Supported Platforms
	Using the Examples with Your Device

	Overview of the Serial Port
	Introduction
	What Is Serial Communication?
	The Serial Port Interface Standard
	Connecting Two Devices with a Serial Cable
	Serial Port Signals and Pin Assignments
	Signal States
	The Data Pins
	The Control Pins

	Serial Data Format
	Bytes Versus Values
	Synchronous and Asynchronous Communication
	How Are the Bits Transmitted?
	Start and Stop Bits
	Data Bits
	The Parity Bit

	Finding Serial Port Information for Your Platform
	Microsoft Windows Platform
	UNIX Platform

	Using Virtual USB Serial Ports
	Selected Bibliography

	Getting Started with Serial I/O
	Example: Getting Started
	The Serial Port Session
	Configuring and Returning Properties
	Displaying Property Names and Property Values
	Configuring Property Values
	Specifying Property Names
	Default Property Values

	Creating a Serial Port Object
	Overview of a Serial Port Object
	Configuring Properties During Object Creation
	The Serial Port Object Display
	Creating an Array of Serial Port Objects

	Connecting to the Device
	Configuring Communication Settings
	Writing and Reading Data
	Before You Begin
	Example — Introduction to Writing and Reading Data
	Controlling Access to the MATLAB Command Line
	Writing Data
	The Output Buffer and Data Flow
	Writing Text Data
	Writing Binary Data
	Troubleshooting Common Errors

	Reading Data
	The Input Buffer and Data Flow
	Reading Text Data
	Reading Binary Data

	Example — Writing and Reading Text Data
	Example — Parsing Input Data Using textscan
	Example — Reading Binary Data
	Viewing the Bitmap Data

	Events and Callbacks
	Introduction
	Example — Introduction to Events and Callbacks
	Event Types and Callback Properties
	Break-Interrupt Event
	Bytes-Available Event
	Error Event
	Output-Empty Event
	Pin Status Event
	Timer Event

	Responding To Event Information
	The AbsTime Field
	The Pin Field
	The PinValue Field
	The Message Field

	Creating and Executing Callback Functions
	Enabling Callback Functions After They Error
	Example — Using Events and Callbacks

	Using Control Pins
	Properties of Serial Port Control Pins
	Signaling the Presence of Connected Devices
	Example — Connecting Two Modems

	Controlling the Flow of Data: Handshaking
	Hardware Handshaking
	Software Handshaking
	Example: Using Software Handshaking

	Debugging: Recording Information to Disk
	Introduction
	Recording Properties
	Example: Introduction to Recording Information
	Creating Multiple Record Files
	Specifying a Filename
	The Record File Format
	Example: Recording Information to Disk
	The Record File Contents

	Saving and Loading
	Using save and load
	Using Serial Port Objects on Different Platforms

	Disconnecting and Cleaning Up
	Disconnecting a Serial Port Object
	Cleaning Up the MATLAB Environment

	Property Reference
	The Property Reference Page Format
	Serial Port Object Properties

	Properties — Alphabetical List

	Index

	tables
	MAT-File Routines
	MAT-File C-Only Routines
	MAT-Function Folders
	Library File Names by Operating System
	Library Dependency Commands
	MATLAB Primitive Types
	MATLAB Extended Types
	Binary MEX-File Extensions
	MEX Examples
	Binary MEX-File Extensions
	mxArray Functions Using mwSize/mwIndex
	mxArray Functions Using mwSize/mwIndex
	C Engine Routines
	Fortran Engine Routines
	Library File Names by Operating System
	Library Dependency Commands
	Fields Displayed in the Methodsview Window
	Conversion of MATLAB Types to Java Types
	Conversion of Java Types to MATLAB Types
	MATLAB Primitive Type Conversion Table
	MATLAB Cell Array Conversion Table
	Arguments Passed by MATLAB Functions
	Fields of the Event Structure
	Serial Port Pin and Signal Assignments
	Parity Types
	Descriptive General Purpose Properties
	Communication Properties
	Functions Associated with Writing Data
	Properties Associated with Writing Data
	Functions Associated with Reading Data
	Properties Associated with Reading Data
	Event Types and Callback Properties
	Event Information
	Control Pin Properties
	Software Handshaking Characters
	Recording Properties

